
ORIGINAL PAPER

Rapid sperm evolution in the bluethroat (Luscinia svecica)
subspecies complex

Silje Hogner & Terje Laskemoen & Jan T. Lifjeld & Václav Pavel &
Bohumír Chutný & Javier García & Marie-Christine Eybert &
Ekaterina Matsyna & Arild Johnsen

Received: 21 January 2013 /Revised: 17 April 2013 /Accepted: 19 April 2013 /Published online: 11 May 2013
# Springer-Verlag Berlin Heidelberg 2013

Abstract Spermatozoa are among the most variable animal
cell types, and much research is currently directed towards
explaining inter- and intraspecific variation in sperm form
and function. Recent comparative studies in passerine birds
have found associations between the level of sperm compe-
tition and both sperm length and sperm velocity. In species
with sperm competition, postcopulatory sexual selection

may shape the morphology of sperm as adaptations to the
female environment. The speed of evolutionary change in
sperm morphology at the species level is largely unknown.
In this study, we analysed variation in sperm morphology
among morphologically distinct and geographically isolated
bluethroat subspecies in Europe. Consistent with previous
studies, our analyses of mtDNA and nuclear introns suggest
recent divergence and lack of lineage sorting among the
subspecies. We found significant divergence in total sperm
length and in the length of some sperm components (i.e.
head and midpiece). There was a significantly positive rela-
tionship between pairwise divergences in sperm morpholo-
gy and mitochondrial DNA, suggesting a role for genetic
drift in sperm divergence. The magnitude of sperm length
divergence was considerably higher than that in other geo-
graphically structured passerines, and even higher than that
observed between several pairs of sister species. We hypoth-
esize that the rapid sperm evolution in bluethroats is driven
by sperm competition, and that strong postcopulatory sexual
selection on sperm traits can lead to rapid speciation through
reproductive incompatibilities.

Keywords Sperm competition . Spermmorphology . Sperm
size variation . Reproductive isolation

Introduction

Sexual selection is a potent evolutionary force that may lead
to rapid changes in traits related to success in competition
for mates, like ornaments and armaments (Andersson 1994).
Divergence in such secondary sexual traits and associated
mate preferences may lead to precopulatory prezygotic iso-
lation between populations and hence catalyse the early
stages of speciation (Panhuis et al. 2001; Grether 2010;
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Maan and Seehausen 2011). Similarly, postcopulatory sex-
ual selection (i.e. sperm competition and cryptic female
choice) exerts strong selection on primary sexual traits
(e.g. gametes and the tissues producing them), and diver-
gence in such traits may also lead to prezygotic reproductive
isolation, and ultimately speciation (Coyne and Orr 2004).

Spermatozoa are among the most variable animal cell
types, exhibiting considerable variation in morphology and
behaviour at all levels of organisation (e.g. Cohen 1977;
Pitnick et al. 2009). Recent comparative studies have
suggested that sperm competition influences the evolution
of a range of male reproductive traits (Birkhead and Møller
1998). For example, species experiencing stronger sperm
competition have larger testes (relative to their body size)
(Møller 1991; Harcourt et al. 1995; Hosken 1997; Stockley
et al. 1997; Byrne et al. 2002) and produce more sperm
(Rowe and Pruett-Jones 2011). Furthermore, total sperm
length is associated with the level of sperm competition in
a range of taxa including, insects (Gage 1994; Morrow and
Gage 2000), fish (Stockley et al. 1997; Balshine et al. 2001),
frogs (Byrne et al. 2003), mammals (Gomendio and Roldan
1991; Breed and Taylor 2000; but see Hosken 1997; Gage
and Freckleton 2003) and birds (Lüpold et al. 2009b;
Kleven et al. 2009; but see Immler and Birkhead 2007).

Variation in sperm size between males in a population is
also associated with sperm competition. Specifically, the
coefficient of between-male variation in total sperm length
is negatively related to the level of sperm competition faced
by males in passerine birds (Calhim et al. 2007; Kleven et al.
2008; Lifjeld et al. 2010), suggesting that sperm competition
exerts strong stabilizing selection on sperm morphology.
Sperm traits may also respond to directional selection from
sperm competition (e.g. Kleven et al. 2009; Lüpold et al.
2009a), in addition to being influenced by drift (Laskemoen
et al. 2013). Moreover, sperm morphology appears to be
shaped via interaction with the female reproductive environ-
ment (Woolley 1970; Briskie et al. 1997; Morrow and Gage
2001; Higginson et al. 2012). Therefore, a complex range of
selection pressures and drift are likely to drive the evolution
of sperm morphology and, consequently, sperm traits may
move towards different optima in different populations,
especially if the spatially isolated populations differ in
strength or form of selection.

Passerine birds exhibit considerable variation in total
sperm length, ranging from 42.7 μm in the red-backed
shrike (Lanius collurio) (Briskie et al. 1997) to 291 μm in
reed bunting (Emberiza schoeniclus) (Dixon and Birkhead
1997). Sperm length generally shows high phylogenetic
dependence in comparative studies (e.g. Kleven et al.
2009). However, closely related species may also exhibit
large divergence in total sperm length, e.g. common chiff-
chaff (Phylloscopus collybita) 116.2±1.6 μm (Laskemoen
& Lifjeld unpublished) and willow warbler (Phylloscopus

trochilus) 93.5±1.9 μm (Lifjeld et al. 2010). Within the
family Muscicapidae, total sperm length varies from
101.2 μm (collared flycatcher Ficedula albicollis) to
279.9 μm (nightingale Luscinia megarhynchos) among 12
investigated species (own unpublished data). To date, rela-
tively few studies have investigated intraspecific variation in
sperm morphology, despite the fact that analyses at these
levels (between-individuals within a population and be-
tween populations) should provide considerable insight into
both the selection pressure shaping the evolution of sperm
morphology and the speed of evolutionary change in sperm
traits. Additionally, intraspecific studies may reveal con-
trasting patterns to studies at the interspecific level (e.g.
Lüpold et al. 2009b), thus a comprehensive understanding
of the evolution of sperm traits requires examination at both
levels of organisation.

A limited number of recent studies of passerine birds
demonstrate significant variation in sperm morphology
among different populations (Lüpold et al. 2011; Schmoll
and Kleven 2011; Laskemoen et al. 2013). Moreover, in
addition to variation in sperm morphology among redwing-
blackbird (Agelaius phoeniceus) populations, Lüpold et al.
(2011) found a gradual increase in sperm size from southwest
to northeast of the breeding range, and a negative relationship
between sperm length and body size across population.
However, in this study and the study of Schmoll and Kleven
(2011) on coal tits (Periparus ater), the degree of genetic
differentiation between populations was unknown and thus
no inference could be drawn regarding the speed of sperm
diversification. Laskemoen et al. (2013) found significant
variation in sperm morphology among barn swallow
populations (Hirundo rustica). Furthermore, the subspecies
with the highest genetic distance also showed the largest
difference in sperm morphology, leading the authors to
hypothesise that variation in sperm morphology between sub-
species might reflect the genetic distance between taxa
(Laskemoen et al. 2013). Studies incorporating information
on both variation in sperm traits along with data concerning
genetic divergence are necessary to examine the speed and
direction of evolution on sperm traits.

Here, we examined both sperm morphology and genetic
divergence in the bluethroat (Luscinia svecica) subspecies
complex. The bluethroat is a small (∼18 g) passerine bird,
which ranges from upper arctic limits to temperate and steppe
middle latitudes, and breeds from the western Palearctic to
eastern Eurasia (Cramp 1988). Currently, around ten subspe-
cies are recognized based primarily on differences in male
plumage characteristics and to some extent size (Cramp
1988). All subspecies are sexually dimorphic: males are larger
and exhibit striking sexual ornamentation, whereas female
generally exhibit drab plumage (Johnsen et al. 2006).
Specifically, males have a colourful throat patch with blue
and chestnut surrounding a conspicuous central spot (white,
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red or absent depending on the subspecies), which is displayed
during courtship (Peiponen 1960; Johnsen and Lifjeld 1995).
There is also evidence that subspecies vary in song character-
istics (Turcokova et al. 2010). Currently, the phylogenetic
relationships among the bluethroat subspecies are not well
resolved and subspecific status is somewhat contentious.
Using mtDNA markers (control region, cytochrome b),
Questiau et al. (1998) found support for two distinct subspe-
cies clusters (svecica and namnetum), whereas Zink et al.
(2003), despite reporting a relatively high degree of popula-
tion differentiation (FST=0.29), found little support for sub-
species recognition in a study of seven morphs previously
identified as subspecies based on morphological differences.
Using 11 microsatellite loci, Johnsen et al. (2006) found
evidence for differentiation (FST=0.042) across bluethroat
populations in Europe and Asia. Moreover, that study found
support for genetic differentiation between some morpholog-
ically distinct subspecies, most notably svecica, namnetum,
azuricollis and cyanecula (Johnsen et al. 2006).

Laskemoen et al. (2007) demonstrated considerable
between-male and within-male variation in sperm morphol-
ogy in the nominate subspecies svecica. In the present study,
we focus on the four most distinct subspecies identified by
Johnsen et al. (2006) (i.e. ssp. svecica, namnetum,
azuricollis, cyanecula and in addition ssp. volgae), and
investigate between-population variation in sperm morphol-
ogy in relation to variation in two mtDNA regions and two
nuclear introns. Our study had two main aims: (1) to test if
there is a relationship between genetic divergence and sperm
divergence among these five study populations and (2) to
compare differences in sperm evolution between bluethroat
and other species with known sperm divergence.

Material and methods

Field work

We collected samples from each of the five bluethroat sub-
species (azuricollis from Spain, cyanecula from central
Europe, namnetum from France, svecica from Norway and
volgae from Russia; see Table S1 for details of localities and
Table S2 for information about individual samples) during
the peak of the breeding season in 1996–2011. Five in-
dividuals of L. megarhynchos, collected by Marc Naguib
in Germany in 2000, were used as outgroup. Birds were
caught on their home territories using song playback and
mist nets or clap nets using mealworm as bait. Sperm
samples were collected via cloacal massage (Wolfson
1952). The ejaculate was collected with a micro capillary
tube and fixed in 5 % formalin (PBS) solution. At the same
time, 25 μl of blood was collected by brachial venipuncture
and stored in 96 % ethanol. DNA was later extracted

following the protocol for the E.Z.N.A blood kit (Omega
Bio-Tek, Inc, Norcross, GA, USA) and the QIAmp blood kit
(QIAGEN, Inc. Valencia, CA, USA).

Sperm morphology

For each individual, approximately 15 μl of diluted sperm was
applied to a glass microscope slide and allowed to air-dry.
Next, the slide was gently rinsed with distilled water and
allowed to air-dry once again. We captured digital images
(×160 magnification) of sperm cells using a Leica DFC420
camera mounted on a Leica DM6000 B digital light micro-
scope (Leica Microsystems, Switzerland) and measured sperm
length using specialised image analysis software (Leica
Application suite v. 2.6.0 R1). For each male, the following
measurements were obtained (±0.1 μm): head length,
midpiece length, tail length and total length (i.e. head +
midpiece + tail). Following the recommendation of
Laskemoen et al. (2007), we measured 10 morphologically
normal sperm from a minimum of 10 males per subspecies
(with the exception of volgae, for which samples were only
available from nine males). Additionally, we calculated the
within male (CVwm) and between male coefficient of variation
in total sperm length (CVbm), the latter being an index for
sperm competition across passerines (Lifjeld et al. 2010). We
then adjusted CVbm according to the sample size using the
formula CVbm + (1/(4n)) (Sokal & Rohlf, 1995), because
CVbm has been documented to be underestimated in small
population samples (Laskemoen et al., 2007). Hereafter,
CVbm will refer to the adjusted value. To avoid observer
effects, all measurements were conducted by one person (TL).

PCR and sequencing

We sequenced two mitochondrial regions (COI-region and
control region, n=84 each) and two Z-linked introns (BRM-
15 and VLDLR-7, n=53 each; see Table S3 for primer
combinations and PCR conditions). All markers were am-
plified in PCR reaction volumes of 10 μL, containing dH2O,
1X PCR buffer II (Applied Biosystems, Foster City, CA,
USA), 1.5 mM magnesium, 0.2 mM dNTP (ABgene,
Epsom, UK), 0.5 mM forward and reverse primer, 3 %
dimethyl sulfoxide, 0.25 U AmpliTaq DNA polymerase
(Applied Biosystems) and approximately 50 ng DNA tem-
plate. Amplifications were run on a DNA Engine Tetrad 2 (MJ
Research, Waterton, MA, USA) using the following profile:
95 °C for 1 min, 94 °C for 30 s, annealing temperature 52–
56 °C (depending on primer combination; see Table S3) for
30 s and 72 °C for 1 min. This profile was then repeated for a
further 34 cycles before a final elongation step of 72 °C for
10min. In order to confirm amplification success and to exclude
any contamination, 3 μl of PCR product was electrophoresed in
1 % agarose TBE.
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The remaining PCR product was purified by digesting
unincorporated nucleotides and primers using diluted (1:9)
ExoSap-It (United States Biochemical, Cleveland, OH,
USA) run at 37 °C for 45 min, followed by 15 min at
80 °C to inactivate the enzyme. The PCR products were
then sequenced using BigDye Terminator v 3.1 Cycle
Sequencing kit (Applied Biosystems). Next, sequences were
aligned (using ClustalW) and manually edited in the pro-
gram Mega v 5.05 (Tamura et al. 2011). For each locus, all
sequences were truncated to the length of the shortest se-
quence for comparison. Altogether, we included samples
from five different subspecies and eight different
localities/populations (Table S2). Sperm samples and mito-
chondrial regions were analysed from individuals sampled
at the same locality during a single collection episode, with
the exception of individuals sampled in Wroclaw (Poland)
for which blood and sperm were collected from the same
locality but from different birds during different years (2009
and 2010, respectively). For the Z-introns, samples were
obtained from the same localities, but in different years, as
both sperm and mtDNA samples, with the exception of
cyanecula, for which samples were obtained from
Thüringen (Germany) and Trebon (Czech Republic).
Importantly, introns were sequenced from females only
which allowed us to obtain exact haplotypes, since female
birds are hemizygous on the Z-chromosome. We did not
sequence any introns from the volgae population.

Statistical methods

We tested for differences in sperm morphology (means per
male) among subspecies using ANOVAs and post hoc
Tukey HSD tests using Statistica v 7.1 (StatSoft Inc).
DNAsp v 5 (Librado and Rozas 2009) was used to calculate
the nucleotide diversity (π) (Hudson et al. 1987) and
Tajima’s D (Tajima 1989) for both mitochondrial and nu-
clear regions. The Tajima’s D tests showed no significant
deviation from neutrality for either of the subspecies, in
either of the regions (Table S4).

We implemented a model test in Mega v 5.05, using BIC
(Bayesian Information Criterion) scores to find the best
fitting substitution model for the two mitochondrial markers
combined (all further analyses were conducted for the two
mtDNA regions combined) and each intron separately. For
mitochondrial regions, a gene tree based on maximum like-
lihood was made using Mega v 5.05 with the substitution
model HKY + G, with L. megarhynchos as outgroup. For
nuclear regions, maximum likelihood were constructed
using the K2P (VLDLR-7) and Tamura-3-parameter
(BRM-15) model using the same outgroup. Bootstrap values
were calculated in Mega v 5.05 using 10,000 iterations.
Translation from nucleotide to amino acid sequences of the
analysed regions revealed no stop codons, frameshifts or

systematic double peaks in the COI region, indicating an
absence of pseudogenes.

In order to examine the genetic structure of the
populations, analysis of molecular variance (AMOVA) was
run using Arlequin v 3.5 (Excoffier et al. 2005). The vari-
ance was partitioned into variation between populations and
variation within populations. Pairwise species differentia-
tion was estimated using FST (Weir and Cockerham 1984),
with default settings in the population comparison. These
FST values can be used as short-term genetic distances
between populations. The null hypothesis is no differences
between the populations, and the P value is given as the
proportions of simulations giving a FST value larger or equal
to the observed one. Similarly, we calculated a measure of
phenotypic divergence, PST that expresses the proportion of
total variance in sperm length that can be attributed to the
variation among populations. PST was calculated using the

following formula, PST ¼ σ2B
σ2Bþ2h2σ2W

, where σ2
B is the pheno-

typic variance between populations, σ2
W is the phenotypic

variance within populations and h2 denotes the heritability
(Leinonen et al. 2006). We calculated σ2

B and σ2
W from one-

factor ANOVA following Sokal and Rohlf (1995; p. 216,
Box 9.2). The heritability was conservatively set to 0.62,
based on an estimate of heritability of flagellum length
(midpiece plus tail) reported for the zebra finch
(Taeniopygia guttata) by Birkhead et al. (2005). Next, in
order to test for a correlation between pairwise estimates of
genetic divergence (FST) and sperm length divergence
(PST), we performed a Mantel test (Mantel 1967) to correct
for the multiple uses of the same populations. The Mantel
test was conducted in R v 2.11.1 (R Development Core
Team 2009) using the package ade4 (Dray and Dufour
2007) and the P value obtained through Monte Carlo sim-
ulations with 9,999 replicates.

Results

Sperm morphology

We found significant variation in total sperm length among
the five subspecies (Table 1; F4,77=47.0, P<0.001; Fig. 1).
This was more or less explained by variation in midpiece
length (F4,77=26.8, P<0.001) which showed the same pat-
tern as total length. In addition, we found significant varia-
tion in head length (F4,77=7.47, P<0.001), although this
component showed a different pattern than total and
midpiece length. In contrast, tail length did not vary be-
tween subspecies (F4,77=0.80, P=0.53). Post hoc tests re-
vealed that total length and midpiece length was
significantly longer in azuricollis than in all other subspe-
cies (Table 2). In addition, svecica had significantly longer
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sperm than cyanecula, and cyanecula had a significantly
longer midpiece than namnetum (Table 2). Finally, svecica
had significantly longer sperm head than both cyanecula
and namnetum (Table 2). The overall phenotypic divergence
in total sperm length PST was 0.70 (F4,77=47.0, P<0.001),
that is, 70 % of the overall between-male variation in sperm
length was explained by population.

We found a nearly twofold variation in population-wise
CVbm of total sperm length, ranging from 1.91 in svecica to
3.30 in azuricollis (Table 1). A post hoc test of homogeneity
of variances showed significant heterogeneity of sperm var-
iation among populations (Bartletts test χ2=9.59, P=0.048).
Moreover, the mean CVwm varied significantly between
populations (F4,77=8.44, P<0.001) and ranged from 1.30
to 1.92 (Table 1), with cyanecula differing significantly
from both azuricollis and svecica (Table 2). There was no
significant correlations between CVbm and mean CVwm

(Spearman’s correlation: N=5, rs=0.05, P=0.93).

Variation in mitochondrial DNA

Of the 1,229 bp sequenced for mtDNA in all individuals, we
found 27 variable sites and 16 parsimony informative sites
(outgroup excluded). The nucleotide diversity (π) for all
subspecies combined was 0.0023, and ranged from 0.0006
(azuricollis) to 0.0022 (volgae) across the five subspecies
(Table S4).

The mitochondrial gene tree did not show a clear structure of
the subspecies in monophyletic clades, but it did showmoderate
support (with bootstrap support just above 50 %) for two
groups, one consisting of namnetum, cyanecula and azuricollis,
and the other consisting of svecica (Fig. 2). Interestingly, theT
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Fig. 1 Box plot illustrating differences in total sperm length for the
five subspecies of the bluethroat. White line represents mean values,
boxes indicate ±SE and whiskers indicate ±SD. See Results for test
statistics
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volgae population was present in both groups (Fig. 2). In
addition, the azuricollis population formed a monophyletic
group, with relatively high bootstrap support (>80%) for a clade
consisting of 19 out of the 21 individuals from this population.
The mtDNA gene trees did not have enough resolution or
support to determine the most ancestral of these five subspecies.

AMOVA revealed that 61 % of the total variation occurred
between subspecies while 39 % occurred within populations,
with an overall significant FST value (FST=0.61, P<0.001).
Additionally, pairwise FST values between the five subspecies
showed relatively high and significant values (see Table 3). The
maximum genetic distance between any individual (using K2P
substitutionmodel) was estimated to 0.7% and themean genetic
distance to 0.3 %. The genetic distance between the supported
azuricollis group (consisting of 19 out of 21 individuals) and the
rest of the bluethroats was 0.4 %. Assuming a conventional
molecular clock and mutation rate (i.e. 2 % divergence per
million years, Bromham and Penny 2003), the maximum time
since divergence was 350,000 years, the mean time since
divergence150,000 years and the time since divergence between
the two groups (azuricollis vs the rest) was 200,000 years.

Variation in nuclear DNA

Of the 933 bp sequenced for the nuclear introns in all individ-
uals, we found 39 variable sites and 22 parsimony informative
sites (outgroup excluded). The total nucleotide diversity (π) for
the introns was 0.0061 for all subspecies combined. The π
value ranged from 0.0006 (in azuricollis) to 0.0074 (in
cyanecula) for the two introns combined (Table S4). The two

gene trees calculated using the introns BRM-15 and VLDLR-7
(with L. megarhynchos as outgroup) showed no structure
related to the subspecies (Figs. S1 and S2). AMOVA revealed
that 12 % of the total variation occurred between populations,
while 88 % occurred within populations, with an overall sig-
nificant FST value (FST=0.12, P value<0.001).

Comparing sperm with genes

There was an overall good concordance between mtDNA
divergence (FST=0.61) and sperm length divergence (PST=
0.70) for all five populations analysed together. There was
also a significant positive correlation between the two di-
vergence measures for all pairwise estimates among
populations (Fig. 3; Mantel test: R=0.80, P=0.042). There
was, however, no such relationship between intronic FST

estimates and PST estimates (Mantel test: R=0.24, P=0.34).
Populations with high genetic diversity in mtDNA and Z

introns had relatively low variation in sperm length (mtDNA:
N=5, rs=−0.20, P=0.75; intronic DNA: N=5, rs=−0.90, P=
0.037). This is opposite to expectation from a neutral model of
variation in a heritable character, like sperm length.

Discussion

Subspecific divergences in the bluethroat

We found considerable variation in sperm morphology be-
tween subspecies, with differences in sperm head and

Table 2 Tukey HSD tests of between-subspecies differences in components of sperm length; head, midpiece and total length in addition to CVwm

Trait Subspecies Azuricollis Cyanecula Namnetum Svecica

Head Cyanecula 0.33

Namnetum 0.09 1.00

Svecica 0.32 0.002 <0.001

Volgae 0.97 0.18 0.05 0.90

Midpiece Cyanecula <0.001

Namnetum <0.001 0.002

Svecica <0.001 0.40 0.61

Volgae <0.001 0.83 0.10 0.93

Total Cyanecula <0.001

Namnetum <0.001 0.03

Svecica <0.001 <0.001 0.10

Volgae <0.001 0.13 1.00 0.13

CVwm Cyanecula <0.001

Namnetum 0.48 0.03

Svecica 1.00 <0.001 0.31

Volgae 0.60 0.07 1.00 0.46

Significant results (after Bonferroni corrections) highlighted in bold
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midpiece length, as well as total sperm length between
several of the sampled taxa. Seventy percent of the pheno-
typic variation in total sperm length was confined to the
between-population level, while 60 % of the mitochondrial
DNA and 12 % of the nuclear variation resided between
populations. The time since divergence among individuals
in our sample was estimated to be in the range of 150,000–
350,000 years, assuming a 2 % sequence divergence per
million years (Bromham and Penny 2003; Päckert et al.
2007; Weir and Schluter 2008; but see Pulquério and
Nichols 2007). While we acknowledge that these estimates
of time since divergence are rather crude and possibly
overestimated (Ho et al. 2011), they are consistent with
earlier suggestions that bluethroat subspecies diverged dur-
ing the late Pleistocene glaciation periods (Questiau et al.,
1998; Zink et al., 2003). Both mtDNA and nuclear DNA
showed a lack of lineage sorting with respect to subspecies.
Importantly, these findings suggest that bluethroat subspe-
cies have diverged relatively recently and, as such, consti-
tute ‘young’ taxa.

Rapid sperm evolution in the bluethroats

The high divergence in sperm morphology together with
low genetic divergence suggests rapid evolution of sperm
morphology in the bluethroat. Other studies have also
reported inter-population variation in sperm morphology
(Lüpold et al. 2011; Laskemoen et al. 2013; Schmoll and
Kleven 2011). However, relative divergence in total sperm
length was considerably higher in bluethroats (11.6 %) than
between populations/subspecies in five other species (mean
divergence, 2.26 %; range 0.3–3.7 %; see Table 4), as well
as between four pairs of sister species (mean divergence,
3.48 %; range 0.3–9.9 %; see Table 5).

Taken together, our findings demonstrate that the
bluethroat represents a suite of young taxa exhibiting high
divergence in sperm morphology. Few studies including
both genetic and sperm divergence are available for com-
parisons. However, studies of the barn swallow suggest that
European and North American populations diverged ap-
proximately 840,000 years ago (1.68 % divergence in
CO1; Johnsen et al. 2010), but that sperm show just 3.7 %
relative divergence in total sperm length (Laskemoen et al.
2013, Table 4). Similar comparisons can be made if we
consider divergence between sister species. The relative
sperm divergence between sister species ranged from
0.3 % between the house sparrow (Passer domesticus) and
the Spanish sparrow (Passer hispaniolensis, with COI
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divergence=3.0 %) to 9.9 % between the common redstart
(Phoenicurus phoenicurus) and the black redstart
(Phoenicurus ochruros, with COI divergence=7.5 %).
Thus, it appears that the large divergences in sperm morphol-
ogy within the bluethroat have arisen over a very short time
period which suggests that evolutionary change in sperm
morphology has been relatively rapid in this subspecies com-
plex. Support for the hypothesis that sperm morphology can
undergo rapid evolution, has also been found in other taxa. For
example, Landry et al. (2003) showed that sperm morphology
evolved rapidly within two clades of the sea urchin
(Echinometra oblonga). A genetic distance based on COI
suggested a split between these two clades about 250,000 years
ago, which is comparable in time to the genetic divergence
found within the bluethroats (∼150,000–350,000 years).

Rapid sperm evolution: drift versus selection?

Laskemoen et al. (2013) hypothesised that variation in sperm
morphology at the subspecies level might reflect genetic dis-
tances between populations, suggesting that drift is a main
driving force behind this relationship. In agreement with this,
we found a significant relationship between genetic diver-
gence and divergence in total sperm length among bluethroat
subspecies (Fig. 3). This suggests that some of the variation in
total sperm length can be explained by genetic drift among
isolated populations. However, such a correlation would also
be expected if there has been selection for different sperm
traits in randomly varying environments. The lack of a posi-
tive relationship between neutral genetic variation and sperm
variation within populations, suggests that sperm variation is
not a simple function of overall genetic variation in the pop-
ulation. Instead, sperm variation in a population may be
shaped by postcopulatory sexual selection, mediated by the
risk of sperm competition (Kleven et al. 2008, Lifjeld et al.
2010, Laskemoen et al. 2013).

Postcopulatory sexual selection is thought to shape the
evolution of sperm traits (reviewed in Pizzari and Parker
2009). For example, more sperm competition may lead to
stronger stabilizing selection on sperm length for an optimi-
zation to the female reproductive tract, such as the size of
female sperm storage tubules (Briskie et al. 1997). This idea
is supported by a strong negative relationship between
sperm competition and variation in sperm length (Calhim
et al. 2007; Kleven et al. 2009; Lifjeld et al. 2010) and a
correlation between mean sperm length and the length of
sperm storage tubules across species (Briskie et al. 1997;
Kleven et al. 2009). Consequently, stabilising selection is
thought to result in a reduction in sperm size variation, though
such a reduction in variation does not necessarily involve a
simultaneous change in mean trait values. However, there is a
possibility of long-term directional evolution under a scenario
of stabilizing selection given that the optimal phenotype is

consistently larger or smaller than the population mean, even
if the difference is minute. There will also be effects of genetic
drift. Hence, directional evolution does not necessarily require
directional selection in the sense that phenotypes at the ex-
treme end of a distribution are favoured.

In comparative studies of passerine birds, there seem to
be a general pattern of sperm competition being associated
with longer sperm (Briskie et al. 1997; Lüpold et al. 2009a,
b, Kleven et al. 2009, Lifjeld et al. 2010) and a gradual
increase in sperm length over the evolutionary time scale
(Rowe et al. 2013). However, there is still much residual
variation in sperm length among species, and also some
evidence of a negative association with sperm competition
(Immler and Birkhead 2007), which implies that the inter-
pretation of directional change in sperm length as a signature
of sperm competition can be rather complex. Nevertheless, the
reduced population variation in sperm length induced by
sperm competition might be a prerequisite for evolutionary
change in the trait. An example of a species pair with a
presumed absence of sperm competition, and little or no
sperm length divergence, is provided by the Eurasian bull-
finch Pyrrhula pyrrhula and the Azores bullfinch Pyrrhula
murina, which both exhibit extremely high between-male
variation in sperm length (Lifjeld et al. 2013).

The level of sperm competition faced by males in a popula-
tion can be estimated from the between-male coefficient of
variation in sperm length (CVbm), which is lower in
species/populations exhibiting higher rates of extrapair young
(EPY) and hence higher levels of sperm competition (Calhim et
al. 2007; Kleven et al. 2008; Lifjeld et al. 2010; Laskemoen et
al. 2013), presumably because of stabilizing selection on sperm
length (Lifjeld et al. 2010). We found marginally significant
differences in CVbm between the populations, suggesting that
they vary in the level of sperm competition, with svecica
exhibiting the highest level (CVbm=1.9, translating into a rate
of 27%EPYaccording to Lifjeld et al. 2010) and azuricollis the
lowest level (CVbm=3.3, translating into 10% EPY). Similarly,
we found significant variation in the within-male coefficient of
variation in sperm length (CVwm), but a lack of correspondence
between CVwm and CVbm values. This could be explained by
seasonal variation in CVwm, which has been shown for house
wrens (Troglodytes aedon) (Cramer et al. 2013). Variation in
sperm lengths within an ejaculate is presumably not a geneti-
cally coded trait, since all sperm originate from the same diploid
set of genes, but may be influenced by phenotypic plasticity or
production errors during spermatogenesis.

To date, EPP data are only available for two bluethroat
populations. In the svecica population, Johnsen and Lifjeld
(2003) found that 49.5 % of all nests contained at least one
EPY and 26.3 % of all young were sired by extrapair males,
while the corresponding figures for namnetum were 63.8 %
of nests and 41.9 % of nestlings (Questiau et al. 1999), both
of which are comparatively high rates of sperm competition
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(mean for all passerines, 27.1 % of nests, 14.9 % of nestlings;
Griffith et al. 2002). Given the lack of data on EPY levels and
other ecologically relevant variables (e.g. population density,
breeding synchrony) for several of the subspecies, it is
currently not possible to evaluate whether the different
bluethroat subspecies are subjected to different postcopulatory
sexual selection pressures. Nonetheless, it seems clear that the
different populations have diverged rapidly in sperm length
under a general scenario of sperm competition.

Taxonomic implications

Our results, both in terms of mtDNA and sperm morphology
variation, are consistent with the findings by Johnsen et al.
(2006) showing significant differentiation between the four
bluethroat taxa, svecica, namnetum, cyanecula and
azuricollis, thus supporting their status as independently
evolving entities or taxa. This contrasts with the results of
Zink et al. (2003), who found no support for subspecies
using the mitochondrial control region and cytochrome b. It
should be noted that we intentionally selected the most
distinct subspecies, both based on microsatellite and

phenotypic divergence (Johnsen et al. 2006) and hence the
larger degree of population differentiation in mtDNA (FST=
0.61) compared to Zink et al. (2003) (FST=0.29) was to be
expected. There are also similarities between Zink et al.
(2003) and our study: both studies found some support for
one northern and one southern group, and mitochondrial
nucleotide diversity was equivalent in both studies (i.e.
0.0023). The subspecies azuricollis, was described by
Mayaud (1958), and was only recently recognised in The
Clements Checklist (Clements et al. 2012), whereas the IOC
World Bird List (Gill and Donsker 2012) and leading bird
handbooks (Cramp 1988; del Hoyo et al. 2006) place the
Iberian bluethroats in the subspecies cyanecula. Combined
with the results of Johnsen et al. (2006), our data strongly
support azuricollis as a separate subspecies as they are highly
divergent in spermmorphology and constitute a monophyletic
clade in the mtDNA tree. In contrast, this study shows that the
volgae subspecies does not fall into one group, but that in-
dividuals from this (putative) subspecies are distributed across
both mtDNA and nuclear gene trees. These findings, com-
bined with the fact that the sperm measurements of volgae
males fall between those of svecica and cyanecula males, and
that males in our study population show a mixture of orna-
mental spot colouration (chestnut, white and a chestnut/white
mix; E. Matsyna, unpublished data), render the status of
volgae as a separate subspecies questionable.

Sperm divergence and speciation

Given the apparently rapid divergence of sperm morphology
in bluethroats and some other taxa and the comparative
evidence that sperm competition leads to both stabilizing
and directional selection on sperm morphology, a plausible
hypothesis is that sperm competition increases the likeli-
hood of sperm divergence in allopatric populations, which
in turn may result in reproductive isolation upon secondary
contact and, ultimately, speciation (Howard et al. 2009;
Pitnick et al. 2009). If so, one would predict that species
with high sperm competition should show higher levels of
sperm divergence between allopatric populations than those
with low sperm competition, and that speciation should be
more rapid in species with high sperm competition than in

Table 3 FST values (below the diagonal) based on mitochondrial DNA with associated P values (above the diagonal)

Azuricollis Cyanecula Namnetum Svecica Volgae

Azuricollis <0.001 <0.001 <0.001 <0.001

Cyanecula 0.80 <0.001 <0.001 <0.001

Namnetum 0.75 0.20 <0.001 <0.001

Svecica 0.76 0.56 0.53 <0.001

Volgae 0.70 0.36 0.34 0.26

Significant results (after Bonferroni corrections) highlighted in bold

Fig. 3 Plot illustrating pair-wise correlation between the genetic di-
vergence (FST) in mtDNA and total sperm length divergence (PST)
among bluethroat subspecies. See Results for test statistics
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those with low sperm competition. While the last prediction
is difficult to evaluate at present due to lack of data in the
literature, the first prediction is supported by available data
on within-species sperm divergence in passerines, although
the data points are few (Table 4): the two species with small
and non-significant sperm divergence both have low levels
of sperm competition (pied flycatcher: Lifjeld et al. 1991,
15 % of nests, 4 % of nestlings; common redstart: 11 % of
nests, 2 % of nestlings; Kleven et al. 2007) compared to the
four species with significant sperm divergence (% nests,
range, 48–72; % nestlings, range, 26–42) (Weatherhead
and Boag 1995; Johnsen and Lifjeld 2003; Kleven et al.
2005; Schmoll et al. 2005). The hypothesis that sperm
competition promotes speciation through its effects on
sperm divergence clearly warrants further investigation.

In conclusion, high divergence in sperm morphology
combined with low genetic divergence suggests that sperm
morphology has evolved rapidly in the bluethroat subspe-
cies complex. While the relative importance of selection
(e.g. via sperm competition) and drift is unknown, we sug-
gest that selection is likely to have played an important role
in driving sperm evolution because of the relatively short
time span over which change has occurred. Moreover, our
findings suggest that sperm divergence may play an impor-
tant role in the early stages of the speciation process.
Divergences in both primary (this study) and secondary
sexual characters (song: Turcokova et al. 2010; Turcokova
et al. 2011; plumage: Johnsen et al. 2006) among several
distinct bluethroats subspecies (Johnsen et al. 2006), sug-
gests a role for both precopulatory and postcopulatory

Table 4 Summary of minimum, maximum and relative difference in sperm length between populations/subspecies of passerine birds

Common name Scientific name Min (μm) Max (μm) Number of
populations

Significant
differentiation
in sperm?

Relative
difference (%)a

Source

Pied flycatcher Ficedula hypoleuca 102.9 104.2 3 No 1.3 Lifjeld et al. (2012)

Red-winged
blackbird

Agelaius phoeniceus 140.0 146.0 17 Yes 2.9 Lüpold et al. (2011)

Barn swallow Hirundo rustica 87.9 91.2 7 Yes 3.7 Laskemoen et al. (2013)

Coal tit Periparus ater 91.7 94.6 2 Yes 3.1 Schmoll and Kleven (2011)

Common redstart Phoenicurus phoenicurus 163.6 164.1 4 No 0.3 Hogner et al. (2012)

Bluethroat Luscinia svecica 200.6 225.2 5 Yes 11.6 This study

a Standardized difference in sperm length ((max−min)/mean)

Table 5 Comparison of differentiation in total sperm length between four species pairs of passerines

Common
name

Scientific name Total
length
(μm)

SD
(μm)

No. Difference
(μm)a

Relative
difference
(%)b

Source COI divergence (%)c

Black redstart Phoenicurus
ochruros

180.8 3.5 5 Laskemoen, Albrecht, Lifjeld
unpublished data

Common redstart Phoenicurus
phoenicurus

163.7 5.8 75 17.1 9.9 Hogner et al. (2012) 7.5

Collared
flycatcher

Ficedula albicollis 101.2 2.4 14 Laskemoen, Albrecht, Lifjeld
unpublished data

Pied flycatcher Ficedula hypoleuca 103.5 2.8 80 2.3 2.2 Lifjeld et al. (2012) 2.1

Azores bullfinch Pyrrhula murina 45.6 4.3 11 Lifjeld et al. (2013)

European
bullfinch

Pyrrhula pyrrhula 46.3 4.3 13 0.7 1.5 Lifjeld et al. (2013) 1.0

House sparrow Passer domesticus 99.7 3.2 27 Laskemoen, Sætre, Johnsen,
Lifjeld unpublished data

Spanish sparrow Passer hispaniolensis 100.0 2.4 16 0.3 0.3 Laskemoen, Sætre, Johnsen,
Lifjeld unpublished data

2.8

a Absolute difference in mean total sperm length
b Standardized difference in sperm length ((max−min)/mean)
c Johnsen, Lifjeld and Hogner unpublished data
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sexual selection in the diversification of this subspecies
complex.
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