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INTRODUCTION 
 

 Human-induced climate change leads to an increased frequency and intensity of climate and 

weather extremes, including hot extremes and drought, which impact ecosystems and people to an 

extent even larger than estimated in the past (IPCC, 2022). For instance, France experienced in 2022 

the warmest year ever recorded (Figure 1a), characterized by both a high mean temperature and a 

succession of heat waves, with 33 extremely hot days (Meteo France, 2022). Heat waves often – 

though not always – accompany droughts (Albright et al., 2010) and 2022 was also the 3rd longest 

dry period France has ever seen. These extreme climatic events (ECEs) due to climate change lead to 

a widespread deterioration of ecosystem structure and function, resilience and natural adaptive 

capacity associated with phenomenon such as desertification (IPCC, 2022). Yet, consequences of the 

diverse aspects of climate change may vary between locations and groups of organisms. To be able 

to predict population dynamics and changes in ecosystem functioning, we need to understand through 

what biological processes these changes of climatic conditions alter living beings and their 

interactions within ecosystems.  

Indeed, in addition to the global climate change, we are currently facing the 6th mass extinction 

(Ceballos et al., 2015) with a million species at risk of extinction and a decrease by at least 20% of 

the average abundance of native species in major land-based habitats (IPBES, 2019). Birds are largely 

impacted by anthropogenic pressures (Rigal et al., 2023) and are one of the best documented 

taxonomic class of organisms, allowing the most complete and complex assessment of the impacts of 

global environmental changes on living beings. (Lees et al., 2022). Thus, birds are an ideal group to 

study the ecological effects of climate variability as they are easily observed, well documented, and 

responsive to environmental changes (Cady et al., 2019). Global warming induces range shifts 

towards the poles:  warmer temperatures at Northern latitudes enable species previously constrained 

by cold temperatures to breed, while warmer and dryer climatic conditions in the Southern range edge 

become unfavorable  (Bateman et al., 2015). These range shifts lead to a redistribution of species and 

abundance shifts (Albright et al., 2009; Gorzo et al., 2016), often associated with reduced species 

richness (Albright et al., 2009). Extreme climatic events such as heat waves and drought also affects 

population dynamics by reducing breeding success (Colón et al., 2017; Skagen & Adams, 2012). 

Species present over a large range tend to be less negatively affected by variations in temperature, as 

they are more tolerant to a wide range of temperature. Jiguet et al. (2006) found that species showing 

the sharpest decrease in population growth rate during the 2003 heat waves had small thermal ranges, 

indicating that the geographically deduced thermal range is a reliable predictor of species’ resilience 

to extreme temperatures.  

A crucial period for birds is the breeding season, and climate variability can have important 

impacts on bird reproduction. Following the earlier onset of spring with global warming, some bird 

species show an advancement of laying dates (Brown & Brown, 2014; Marrot et al., 2017). Yet, if 

warm temperatures and an early breeding tend to benefit bird reproduction (Hoover & Schelsky, 

2020; Meller et al., 2018) by improving breeding success and extend the duration of the breeding 

season, consequences of climate change on offspring production are unequivocal and vary among 

species and populations. Some studies have found offspring production to be unchanged (Dyrcz & 

Czyż, 2018) or reduced because of trophic mismatch (Visser & Gienapp, 2019) and heat stress caused 

by more frequent weather extremes (Sergio et al., 2018). Responses of bird productivity to climate 
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variability depends on their traits and species whose offspring production tend to be reduced are 

usually large and long-distance migrants (Halupka et al., 2023). Indeed, phenology shifts occurring 

during warmer springs differ among trophic levels with lower trophic levels shifting faster (Thackeray 

et al., 2010). Birds at higher trophic levels shift slower and suffer from a time lag between the peak 

of food supply and food demand of nestlings. The impact of this trophic mismatch is stronger in long-

distance migrants, whose migration date is mainly determined by photoperiod (Dawson et al., 2001). 

The date of arrival at their breeding ground is therefore not very flexible, and they tend to arrive after 

the peak of food supply during warm springs: this is called the trophic mismatch hypothesis (Ross et 

al., 2017).  The direction and magnitude of species responses to drought are also habitat-dependent 

(Roberts et al., 2021), with grassland species and avian communities from dry and semi-arid habitat 

being more strongly affected (Albright et al., 2009; Cady et al., 2019). An intense drought might also 

be deleterious to aquatic species in case lakes completely dry up during summer.  

Therefore, the effects of climatic variability is expected to differ between species. If focusing on 

a precise endangered species might help target specific conservation actions, studying multiple 

species may help identify a global pattern in the response of species, which is often necessary to better 

understand this global phenomenon, affecting many aspects of birds’ life cycle and highly dependent 

on species characteristics. 

Thus, characterizing the consequences of climate change on bird reproduction requires to account 

for many factors, both at the species (life-history traits) and environmental level (variables reflecting 

climatic variation). Climate change is indeed a phenomenon with multiple components acting at 

various temporal and spatial scales (Garcia et al., 2014), which may be involved in complex 

interactions and have potentially opposite consequences on organisms.  

Therefore, it is important to identify predictors that accurately represent both meteorological and 

biological processes involved in the response of organisms to climate change, to try disentangling the 

complex confounding effects of its components. The first critical issue is to choose appropriate 

environmental predictors and appropriate shapes for the reaction norm of reproduction success to 

these predictors. For instance, temperature can have contradictory effects whether we consider mean 

values or extreme events. Indeed, if an increase in mean temperatures can benefit productivity (Meller 

et al., 2018), there may be a threshold above which individuals cannot cope with extreme heat 

anymore (Gardner et al., 2017). These extreme events exceeding ecological or physiological 

tolerances of some species may have a greater influence on population trends than changes in mean 

conditions (Jentsch et al., 2007), and focusing on these extreme events might allow a better 

understanding of the effects of temperature anomalies overall. Positive effects of an increased 

temperature on productivity can also be counterbalanced by a co-occurrence of drought. It is therefore 

necessary to and consider potential confounding effects due to the collinearity between 

meteorological events. If disentangling the effects of heat waves and drought can be challenging, it 

is nonetheless important to gain a more appropriate understanding of how organisms are affected by 

past environmental variability, and therefore improve our ability to forecast population trajectories 

under different scenario of climate change (Albright et al., 2010).      

The notion of drought itself, if it is easy to understand, is not easy to characterize and  is often 

insufficiently defined in ecological studies (Slette et al., 2019). Drought is generally defined as “a 

deficit of water availability relative to normal condition” (Sheffield & Wood, 2011). A definition for 

ecological – or environmental – drought has been proposed to emphasize the negative effects of a 

water deficit on ecosystem functioning: an ecological drought is defined as“an episodic deficit in 



  

3 
 

water availability that drives ecosystems beyond thresholds of vulnerability, impacts ecosystem 

services, and triggers feedback in natural and/or human systems” (Crausbay et al., 2017). Not all 

ecosystem services are affected to the same extent by water deficiency, but this definition emphasizes 

the multifactorial aspect of drought, whose effects depend on both abiotic and biotic components of 

ecosystems. This deficit of water is usually attributed to a lack of precipitation, but the importance of 

evaporation and transpiration in the reduction of available ground water should not be neglected. 

Vicente-Serrano et al. (2010) developed on purpose the Standardized Precipitation 

Evapotranspiration Index (SPEI), a metric that simultaneously accounts for precipitation and potential 

evapotranspiration (PET). The SPEI is now considered one of the best indices, among the numerous 

(>100) that have been proposed, for capturing the impacts of drought on agricultural, hydrological 

and ecological variables (Tian et al., 2018) as it is better able to reflect the temporal variability of 

river discharge and reservoir storage (Lorenzo-Lacruz et al., 2010). Furthermore, drought does not 

depend only on meteorological parameters and not all ecosystems react similarly to a lack of 

precipitation: the effects of drought may be buffered by ecosystem-level compensation between 

species and soil properties influence the quantity of water actually available for organisms. Therefore, 

climate indices may not capture accurately the actual stress experienced by plants and consumer 

organisms (Zang et al., 2020). Moreover, vegetation stress is not only influenced by moisture 

conditions and can be affected by soil type and events such as floods, wildfires, diseases or insect 

infestations (Zargar et al., 2011). Using a more integrative index of the biological effects of drought 

(at least on plant anabolism) might better document the potential impact of drought on ecosystem 

functions, such a biomass productivity and trophic interactions. The Normalized Difference 

Vegetation Index (NDVI) has been developed with this purpose, providing a standardized measure 

of plant productivity derived from the remote sensing of vegetation greenness (Kriegler et al., 1969; 

Rouse et al., 1974; Tucker, 1979). NDVI proves to be a relevant integrated measure of plant 

productivity in ecology  (Yildirim et al., 2022), explaining for instance the spatial progression of 

migratory species returning to their breeding grounds (Thorup et al., 2017; Youngflesh et al., 2021) 

or between-year variation in productivity of common birds (Dubos et al., 2018).  

Not all species breed at the same time. They are therefore not exposed to drought simultaneously 

and may not be most sensitive to drought at similar periods. Thus, it is important to consider the stage 

that is critical in determining the breeding success to be able to detect potential effects of climate 

variability (Bailey & Van De Pol, 2016). Drought can be quantified at various temporal grains to 

capture different characteristics of water resources and hydrological systems. Drought quantified over 

a year represents groundwater availability and reservoir storage, while shorter drought periods (e.g. 

at week scale) mainly affect soil moisture (Cady et al., 2019). The SPEI and NDVI also capture 

drought at different time scales, as drought reduces vegetation vigor over the long term and may 

restructure plant communities. These vegetation changes affect food availability for frugivores, 

granivores and especially insectivorous species feeding on caterpillars and larvae highly dependent 

on primary productivity, while soil moisture affects invertebrate abundance (Carroll et al., 2011).   

Most research on the incidence of out of norm events has been carried out on individual-based 

monitoring of reproductive events (Marcelino et al., 2020), using for instance nest boxes (Marrot et 

al., 2017). But this approach limits the geographical and taxonomical scope and generality of the 

acquired knowledge. Broader scales are required to consider that the results obtained are general, 

applying to most common species, in most places over vast study areas.  
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In the present study, we used mist-net capture data from common passerine bird species, collected 

over more than 30 years at multiple sites across France. First, we aimed at understanding how bird 

productivity if affected by climate variability, particularly disentangling the influences of 

temperature, drought and primary production. We expected productivity to be positively influenced 

by higher temperatures (Meller et al., 2018), enabling an earlier onset of the breeding season, resulting 

in a higher breeding success, and more breeding attempts (Townsend et al., 2013). Empirical data 

seems to be concordant with this prediction as the evolution of observed productivity (Figure 1b) 

follows a similar pattern than temperature anomalies (Figure 1a), with cold years associated with the 

lowest productivity estimates. Yet, we expect extremely high temperatures to affect negatively 

productivity, because of heat stress reducing the nestling and fledging survival (Ross et al., 2017). 

Productivity is also expected to be reduced by drought (Figure 1b-c), impairing food supply, leading 

to smaller clutch size (Conrey et al., 2016; Glądalski et al., 2022; Skagen & Adams, 2012), lower 

fledgling rates (Carleton et al., 2019; Glądalski et al., 2022; Marrot et al., 2017) and decreased nestling 

survival (Conrey et al., 2016; Gardner et al., 2017; Marcelino et al., 2020; Skagen & Adams, 2012). 

We used two distinct drought indices, the SPEI and NDVI, based on meteorological conditions and 

vegetation greenness respectively, to disentangle a direct effect of weather from indirect effects 

mediated by primary productivity. Productivity might be more tightly related to the NDVI, as primary 

productivity is the main predictor of food supply for most species. Then, we analyzed how the 

sensitivity of productivity to climate variability depends on the life-history traits of species. We 

predicted that species with a different migration status to react differently to climate variabilities 

(Telenský et al., 2020). Indeed, while an earlier spring onset favors productivity in resident species, 

long-distance migrants are less flexible and are at a higher risk of trophic mismatch.  

 

 
Research question Environmental 

variable 
Hypothesis 

To what extent is 
productivity affected 
by climate variability? 

 

Temperature 
anomalies 

 Positive relationship with productivity (Meller et al., 
2018) under a temperature threshold  

 Deleterious effects for out of norm conditions (extreme 
heat) 
 

SPEI  Negative effect of drought on primary productivity  
lower food supply  lower bird productivity (Glądalski 
et al., 2014; Skagen & Adams, 2012) 

 NDVI more tightly related to productivity than SPEI 

NDVI 

How does the response 
vary between life-
history traits?  

 

Migration status Long-distance migrants more strongly affected because of 
higher risk of trophic mismatch (Ross et al., 2017) and 
competition with resident species 

Number of broods Multi-brooded species benefit more from prolonged breeding 
seasons in warmer springs than single-brooded species 
(Halupka & Halupka, 2017) 

Habitat Species living in open habitats and species that rely heavily 
on water (aquatic species) more strongly affected by drought  

Thermal range (STI; 
Moussus et al., 2011) 

Species with a wider thermal range less impacted because 
more resilient to temperatures variations (Jiguet et al., 2006) 

Table 1: Table summarizing the main predictions for our research questions   
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Figure 1: Evolution of drought (a) and temperature anomalies (c; difference with local average temperature) in capture 
sites, and productivity (b; ± sd) predicted from the data using glmmTMB and ggpredict  
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MATERIAL AND METHODS 
 

Bird ringing data 
 

We used data collected by the French Constant bird ringing Effort Sites (CES) scheme, 

between 1989 and 2022. The monitoring design consists in 3 to 5 capture sessions with 3m-high mist-

nets, conducted by skilled volunteers, during the breeding season, between beginning of May and 

mid-July. For a given CES site, the monitoring design is mainly fixed: same mist-net locations (mean 

± sd: 12 ± 6), similar dates, same number and duration of capture sessions. The number of monitored 

sites range from 6 in 1989 to 154 in 2021 (Figure 2). Capture sites are scattered throughout France 

(Figure 3) in various habitats. Yet as capture sites are chosen by volunteer bird ringers, there is a 

selection bias in favor of wetlands (16% of sites) and areas with dense shrub layer  (Crbpo, 2020; 

Dubos et al., 2018; Eglington et al., 2015) of protected areas, where bird abundance and productivity 

tend to be higher. Thus, capture sites are not representative of the diversity of habitats in France, but 

this bias reduces the inter-sites variability of productivity and still allows us to investigate the 

variability associated to climate variability.. Each captured bird is individually ringed and its age and 

species are recorded.  

A total of 162 bird species have been captured, among which 48 have been consistently 

encountered in more than 10 sites with more than 30 individuals captured per year (Appendix 2). 

Only these 48 species have been used in the species-specific part of the analyses.  

    

 

 

 

Figure 2: Evolution of the number of active capture sites in the French Constant Effort Site (CES) scheme 
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Definition of explanatory environmental variables 
 

Meteorological data: 

We used temperature data from the forecast model SAFRAN (Durand et al., 1993), provided 

by the French agency of meteorology (Meteo France). This model, based on an optimal interpolation 

method from climatologically homogeneous zones, provides daily values for meteorological 

variables such as temperature, precipitation and evapotranspiration.  

We considered both local average temperature, to take into account between-site variability 

in temperature, and temperature anomalies (aT) as a measure of the interannual variation in 

temperature around the local average temperature (Van De Pol & Wright, 2009). A preliminary 

analysis revealed a non-linear dependence of productivity on local average temperature, with a rapid 

drop of productivity for sites hotter than 13°C (Appendix 4). To account for this major difference in 

productivity between sites, we classified sites in two categories: cool (≤ 13°C) and warm (>13°C) 

sites.  

Temperature anomalies were first computed for each day as the difference between the temperature 

at a given day and the average temperature for this day over the 1989-2022 period. Daily temperature 

anomalies were then averaged either over the whole breeding period or shorter time windows 

covering the early and late breeding period.   

Number of years 

of monitoring 

Figure 3: Location of sites monitored between 1989 and 2022. Sites that were active in 2022 are represented in red, 
and the shade of blue represents the number of years of monitoring 
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To characterize drought, we used the Standardized Precipitation Evapotranspiration Index (SPEI 

; Vicente-Serrano et al., 2010). The SPEI measures the difference between the water supply (i.e. 

precipitation) and demand (i.e. evapotranspiration). It is therefore a more physically realistic drought 

index than those only taking precipitation into account, and is easily comparable among sites and 

time scales (Beguería et al., 2014). We used the SPEI package (Beguería et al., 2014) to compute the 

SPEI for each site from precipitation and potential evapotranspiration data obtained from the 

SAFRAN model. As this index quantifies deviations from climatic water balance at each site over a 

defined period, de facto SPEI values are temporal drought anomalies. Dry conditions are 

characterized by negative values of SPEI, while positive values indicate relatively wet conditions. 

Values ranging from -1 to 1 are considered within the normal range of variation (Table 2) and a 

drought is considered extreme when SPEI < -2. 
 

 

 

Moisture categories SPEI 

Extremely wet ≥ 2.00 

Severely wet 1.50-1.99 

Moderately wet 1.49-1.00 

Normal 0.99 to -0.99 

Moderate drought -1.00 to -1.49 

Severe drought -1.50 to -1.99 

Extreme drought ≤ -2.00 

 

Average moisture per site was characterized by the water balance (BAL ; Vicente-Serrano et al., 

2010), defined as the difference between average precipitations (P) and average potential 

evapotranspiration (PET):  

BAL = P – PET 

As for mean temperatures, mean spring water balance was computed for each site over the 

1990-2022 period.  

 

Extreme weather events: 

As a biological response is often hard to measure, ECEs are often defined using relative threshold, 

the most commonly used being a 10% frequency of occurrence over some historical period (Van De 

Pol et al., 2017). Based on the distribution of our variables (Appendix 8), we decided to use a 5% 

threshold to define out of norm events: we considered a day as extremely warm when the daily 

temperature anomaly was within the 5% highest values of all sites within the 1990-2022 period, and 

an extremely dry day was defined by a SPEI within the 5% lowest values. It corresponds to a SPEI < 

-1.5, i.e. a severe to extreme drought (Table 1). We then summed the number of extreme days over 

the breeding season (whole period or divided into early and late breeding period).  

 

Table 2: Moisture categories associated with SPEI values (Potopova et al., 2015)  
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Vegetation index: 

The Normalized Difference Vegetation Index (NDVI) is a reliable indicator of net primary 

productivity (Kerr & Ostrovsky, 2003; Su et al., 2017) and allows to detect drought-driven deficiency 

in of primary production. It is the most common vegetation greenness index (Pettorelli et al., 2005; 

Yildirim et al., 2022) and is extensively used to characterize drought in ecology (Kchouk et al., 2022).   

Based on remote sensing, the NDVI measures spectral reflectance to quantify vegetation 

greenness: 

���� =
��� − ���

��� + ���
 

where VIS is the spectral reflectance measurement acquired in the visible (red) and NIR the spectral 

reflectance acquired in the near-infrared region of the spectrum. As green leaves absorb visible light 

and reflect near-infrared light, the more green leaves a plant has, the higher the NDVI (Su et al., 

2017). 

We extracted NDVI values for each CES site using 16-day composite 1km spatial resolution 

MODIS (Moderate Resolution Imaging Spectroradiometer), downloaded from AρρEEARS 

(https://appeears.earthdatacloud.nasa.gov/). Low quality values were excluded based on the 

“usefulness” information of the quality assurance (QA) provided, as in Kern et al. (2016) . Most of 

the time, low quality values are due to clouds, as the NDVI is a remote sensing index based on satellite 

images. Therefore, the low quality data excluded were mainly in the Northwestern part of France, 

which may have led to a spatially biased data selection. After this first data selection, 15% of NDVI 

values had been excluded. To maximize the number of NDVI values for sites and years, we decided 

to replace missing values with the following criteria: when only 1 or 2 values were missing for spring 

at a site, we replaced missing values by the mean of the previous and following values. However, 

when more than 2 consecutive values, or when more than 40% of the values were missing for a spring 

at a site, we considered that the NDVI value was unreliable, and the corresponding site-year were 

excluded from analyses requiring NDVI values.  

Time window: 

To investigate the effects of meteorological variation on songbirds productivity, most studies have 

considered the whole breeding season (Dubos et al., 2018; Eglington et al., 2015; Gorzo et al., 2016; 

Marcelino et al., 2020; Meller et al., 2018; Saracco et al., 2022). Yet, the breeding period is divided 

in distinct stages: nest building, laying, rearing etc. The sensitivity of the reproduction process to 

meteorological conditions likely differ between these different stages. To identify the most sensitive 

stages, we tried to use the Climwin R package  (Bailey & Van De Pol, 2016), using a sliding window 

to test various time windows. However, with our large dataset, computation time was too long to be 

able to test all combinations, and the first results were not biologically relevant.  We therefore chose 

a simpler approach, based on the common consideration that the reproduction process can be divided 

in two main stages: reproduction initiation, egg-laying and incubation, which are relatively 

inexpensive in terms of energy expenditure; and the chick rearing stage, which is the most critical as 

it is the most energy demanding for both chicks and parents, and largely determines breeding success 

(and the strength of natural selection of breeding phenology). Hence, following Albright et al. (2010), 

we divided the breeding season in 2 distinct stages:  
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-  the early breeding season, from the beginning of spring (mid-March) to hatching, 

corresponding to prelaying, laying and incubation,  

- and the late breeding period, which corresponds to the period when the juveniles rely on their 

parents to feed them. We set the end of the late breeding season to mid-July, when the last 

capture sessions take place, as we do not have productivity data after this date. 

The hatching date was first determined for each species from the fledging date, estimated as the peak 

of new juveniles captured, to which we subtracted the average rearing period (Storchová & Hořák, 

2018) for each species. As the interspecific variation between hatching dates was small (sd = 5.3 

days), we eventually decided to use the same date for all species to be able to include a greater number 

of species, as the fledging date could not be determined in case few individuals of a species are 

captured . The median hatching date, distinguishing the two breeding stages was May 14th. Across all 

species, the interannual variation of hatching date was also very limited (sd = 1.6 days) so we 

consistently used the same periods for each year, to standardize measures and facilitate the 

computation of environmental variables.  

 

Relationship between variables: 

  We expect environmental variables to be correlated as droughts are often associated with heat 

waves and both precipitation and temperatures influence primary productivity. We did not detect 

strong collinearity preventing us from including them in a single model (Pearson pairwise correlation 

coefficients <0.6). Yet, to better understand the association between drought and temperature 

components, we performed a principal components analysis (PCA) on the 15 centered-reduced 

environmental variables derived from the SPEI, temperature and NDVI anomalies calculated over 

various time windows. We used the mean site conditions (BAL, mean NDVI and mean temperature) 

as supplementary variables.   

 Low (negative) SPEI values are associated with high temperature anomalies (Figure 4), 

meaning that drought events are often associated with eat waves. This is what happened in 2003 and 

2022, two exceptionally warm and dry years (Julliard et al., 2004; Figure 1) as we can see on the 

Figure 4. B), while 2021 had a colder and wetter spring.  However, if a high primary productivity 

described by positive NDVI anomalies is slightly associated with wetter conditions (positive SPEI 

values), it does not appear to be influenced by temperature. Thus, the NDVI does reflect broader 

processes than just weather variables.       
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Figure 1: PCA plots with environmental variables 

 

 

 

a

Figure 4: PCA plots with environmental variables. Variables derived from the NDVI are shown in green, from the 
SPEI in blue and from temperature in red. A) Variables represented in black represent the local average site conditions 
and were used as supplementary variables in the PCA  

B) Observations for the years 2003, 2020, 2021 and 2022 are represented by the ellipses. These years were chosen to 
be representative of particularly warm and dry (2003, 2020 and 2022) or cold and wet (2021) 

b 
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Species traits 

Phenology: 

Breeding phenology was estimated from the peak of juveniles fledging. The progressive 

emergence of juveniles throughout the breeding season, from no juveniles in early spring to a 

maximal number of juveniles captured in early summer, follows a sigmoid shape (Appendix 5). It 

was modeled in a Bayesian hierarchical random effects framework using Markov Chain Monte Carlo 

simulation (Cuchot et al., in preparation). Breeding phenology was estimated for species whose 

number of captured individuals was sufficient to ensure the convergence of the model (48 species). 

To evaluate the robustness of this method, we compared it to a method developed by Moussus et al. 

(2011), fitting GAMM to capture data to estimate species’ phenological adjustment to temperature. 

For each species, we estimated the annual deviation from the species’ reference breeding phenology 

and analyzed the correlation between the results of both methods. Pearson’scorrelation coefficients 

varied between species (Appendix 6); mean ± sd: 0.57 ± 0.27), and no method performed significantly 

better than the other across species. As the breeding phenology estimated with Cuchot’s method 

seemed biologically relevant, we decided to use this one.  

 

Life-history traits:  

Species’ response to meteorological variability between reproductive seasons may depend on 

their life history traits. Indeed, some groups of species may respond more to meteorological 

variability (either because they are more exposed or more sensitive to it). For instance, long-distance 

migrants are exposed to different climatic factors during their annual cycle, and they have been shown 

to be more strongly affected by climate variability than residents or short-distance migrants (Telenský 

et al., 2020). Diet could also be a factor influencing species’ response to climate change, as strict 

insectivorous species (Visser & Gienapp, 2019) are more susceptible to suffer from trophic mismatch. 

These two traits are highly correlated, most long-distance migrants being strict insectivorous (Figure 

5). Thus, to prevent collinearity we only included the migration status in our analyses. Indeed, it is a 

more comprehensive trait, accounting for a difference in diet but also in phenology, as migration is 

an adaptation to seasonality and environmental phenology. .. Previous studies have found that 

grassland species and avian communities from dry and semi-arid habitat tended to be more strongly 

affected (Albright et al., 2010; Cady et al., 2019). Therefore, we also included in our models the 

habitat, independent from diet and migration status (Figure 4), to compare species living in terrestrial 

habitat to aquatic species. 

Species’ sensitivity to temperature may also influence their responsiveness to climate 

variability (Addo-Bediako et al., 2000). It can be estimated from the thermal niche width, measured 

as a thermal specialization index (TSI), which corresponds to the difference between the thermal 

maximum and thermal minimum (Jiguet et al., 2006; Moussus et al., 2011). We also tested the effect 

of this variable on the response to climate variability, to see to what extent thermal tolerance plays a 

role in the effects of temperature and drought on productivity. The number of broods (Storchová & 

Hořák, 2018), associated with phenology and the length of the breeding season (Halupka & Halupka, 

2017), may also affect productivity.   
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Statistical analyses 

I. Cross-species models 

We used generalized linear mixed models (GLMM; glmmTMB package; Brooks et al., 2017) to 

assess the effects of yearly anomalies of temperature, SPEI and NDVI on productivity, and their 

interaction with local average conditions. Productivity, the response variable, was included as the 

total number of juveniles and adults captured at a given site and year, representing the proportion of 

juveniles and following a binomial distribution. We also included density to account for the major 

influence of negative density-dependence on productivity: following Telensky et al. (2020), we 

included density as a yearly anomaly of the total number of adults per species and per site.   

We also added random effects to account for the random component of between-site variation 

and residual between-year variations. In this first step, we did not focus on interspecific differences 

but investigated how climate variability affected an average songbird. Therefore, we accounted for 

between-species variations by including species as a random effect.  

Non-linear relationships between productivity and environmental variables are expected when 

optimal intermediate environmental conditions favor a high productivity. We used univariate 

generalized additive mixed models (GAMM ; mgcv package; (Wood, 2011) to explore non-

linearities. In case non-linear relationships were found, we added quadratic terms to the GLMM..  

- Model selection procedure 

The influence of explanatory variables on productivity was inferred using a multi-model selection 

approach, based on Akaike’s information critera corrected for small sample size: AICc = AIC + (2K 

(K + 1))/(n - K - 1), where n is the sample size, and K the number of parameters estimated in model 

(Burnham & Anderson, 2004) with the MuMIn R package (Bartoń, 2023). AIC (and AICc) takes into 

account how well the model fits the data, while favouring models with fewer parmeters (Symonds & 

Moussalli, 2011). The AIC weight (wm) quantifies the statistical support for a model relative to all 

other models considered, which can be interpreted as the probability that a given model is the best 

approximating model. We estimated the relative importance of an explanatory variable by summing 

Figure 5: MCA plots with categorical life-history trait variables. Variables are presented in A) and categories within 
these variables are detailed in B) 
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the wm of models containing this variable. This predictor weight (wi) corresponds to the probability 

that the predictor is a component of the best model (Symonds & Moussalli, 2011). We used the 

MuMIn function dredge() to build all possible models given a set of candidate explanatory variables. 

A quadratic effect was allowed for all environmental variables to allow for hump-shaped 

relationships, assuming optimality of intermediate  environmental conditions (i.e. optimal for 

average, local conditions since all environmental variables were centered for the mean site value). 

The generated models were then compared by calculating the difference between their associated 

AICc (i.e. ΔAICc). The best fitting model was the one with the lowest AIC. In case the ΔAICc 

between the two best models was < 2, there was uncertainty about whether or not adding a parameter 

improved the fit of the model. In this case, we kept the most parsimonious model among the ones 

with ΔAICc < 2.   

Ideally, we would have defined all possibly relevant environmental / meteorological conditions 

assumed to influence productivity, discarded collinear variables (by retaining the variable with the 

strongest a priori biological relevance), and would have constructed all possible models, so that any 

combination of explanatory variables would have been represented by one model in the selection 

procedure. Unfortunately, this full model selection has been impeded by too long computation time, 

which increases exponentially with the number of variables in the model. To test all possible 

combinations among environmental, several weeks would be needed.  

To limit the number of potential models in competition, and keep computation time reasonable, 

we used a hierarchical approach on increasing modelling complexity, based on five sequential multi-

model selections detailed below. We started with the analysis of the statistical support of the simplest 

and most trivial effects, such as the effects of average local climate (null model M0), and simple 

annual anomalies of meteorological conditions per site. Then, we progressively refined the modelling 

of retained explanatory variables by considering more complex effects, such as potential quadratic 

relationships, dependence on the stage of the reproductive season, interactions with average local 

conditions and differential effect of extreme conditions (assuming out-of-norm effects on 

productivity). 

1. Null model: considers the effects of average local climates: mean NDVI, mean temperature 

(as categories), and mean BAL, and corrects for density dependence. 

������������ ~ � +  ��. �������� +  ��. ����� +  ��. ��� + ��������� + �� + �� + ��� +  ��  

where α is the average productivity, β1 is the slope for the effect of local average NDVI meanNDVI, 

β2 is the slope for the effect of local average temperature meanT, β3 is the slope for the effect of local 

average water balance BAL, β4 is the slope for the effect of local density anomaly, and εs, εy and εsp 

hold respectively for the random terms for site, year and species effects; εr is the residual variation. 

To determine which meteorological variables among our set of candidate predictors best explains 

variations in productivity, we performed a model selection on models containing either: 

2. a) Meteorological variables for the whole breeding season: SPEI and averaged tempera-

ture anomalies computed over the whole breeding season 

2. b) Meteorological variables for early/late breeding season: SPEI and averaged temperature 

anomalies computed over the early and/or late breeding season  

(M0) 
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3. Extreme climatic events (ECE): number of extremely dry or warm days during either a) 

the whole breeding season or b) the early and/or late breeding season 

This model selection allows on the one hand determining at each step whether temperature and 

SPEI is a better predictor of variations in productivity, or if both variables explain part of the variation. 

This information is provided by the predictor weights (Table 2). On the other hand, the model 

selection gives us indications on the period during which meteorological variability most influences 

productivity and whether extreme events are more influential than the overall variation. Predictors 

included in the model with the lowest AICc enabled a better fit of the data and therefore better 

explained the variation in productivity.   

After we have determined the relative importance of temperature and SPEI as indicators of heat 

waves and drought, we assessed whether accounting for variations of vegetation greenness by 

including NDVI anomalies improved the fit of the model and could replace the SPEI as a drought 

index. Similarly to the previous steps, we evaluated statistical support for NDVI anomalies computed 

over the different periods: 

4. NDVI: NDVI anomalies computed over 

a) The whole breeding period 

b) The early/late breeding period 

At the end of the selection process, we obtained a best model containing the most relevant 

environmental variables. This best model (BM) was used as a reference for the next steps of the 

analyses. 

5. Habitat:  

Species may react differently to drought depending on the habitat they live in. Indeed, terrestrial 

and aquatic habitats have different structures, which make them more or less likely to cope with 

drought and climate variability. Therefore, primary productivity may be affected differently in 

terrestrial and aquatic habitats, which can influence songbirds’ productivity.  

To test the effect of habitat on the average productivity, we added to the best model (BM) a 

variable describing the habitat of each site (terrestrial or aquatic) as a fixed effect. We also included 

interactions between habitat and the environmental variables to assess if the effects of these predictors 

on productivity diverged between terrestrial and aquatic habitats.  

6. Phenology:  

Phenological change in organisms is one of the most observed consequences of climate change. 

Phenological plasticity is linked to breeding success and species that are able to breed earlier in 

warmer, more precocious spring tend to have a higher productivity than less flexible species (Halupka 

et al., 2023; Moussus et al., 2011). 

Our main objective in this study is to investigate the effects of climate variability on productivity, 

whether this effect is due to a shift in phenology or other co-occurring environmental anomalies. This 

is why we did not include phenology in the previous steps to determine which environmental variables 

influence productivity. Yet, temperature anomalies are one of the main drivers of phenological change 

(Moussus et al., 2011). Therefore, part of the effects of temperature anomalies on productivity 

evaluated in our previous models might be due to phenological flexibility. To evaluate the role of 

phenology in productivity’s response to temperature and the residual influence of temperature when 

accounting for phenology, we added phenology as a fixed effect to the best model. This variable 
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corresponds to the annual deviation for each species from its mean breeding phenology (across all 

sites, at national level): negative when breeding earlier than usual and positive in case of late breeding.   

 

 

II. Role of life-history traits in the response to meteorological anomalies 

Once we identified which environmental variables have an effect on the productivity of the average 

common songbird species, we tested for potential differences between species in their response to the 

main environmental variables.  

To do so, we added a species fixed effect in interaction with the environmental variables of the 

best model (BM) identified at the end of the sequential multi-model inferences (Figure 5, step 1.). 

Thus, we could extract an estimate and standard error of the response of each species to the 

environmental variables.  

These estimates per species were then used as a response variable in a second model using the 

brms R package (Bürkner, 2017) to estimate the influence of life-history traits on specific response 

to environmental variables (Figure 5, step 2.). Standard errors were included to account for the 

precision of the estimation for each species. Species that are more closely related might tend to show 

more similar responses to climate variability. Therefore, we corrected for phylogenetic relatedness 

by including a phylogenetic variance-covariance matrix obtained from a 50% consensus tree built 

with phytools (Revell, 2012) from a set of 1000 generated phylogenetic trees from Jetz et al. (2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

brm(estimate | se(se) ~ Trait + 
                                     (1|gr(phylo, cov = A))) 

corrects for phylogenetic re-
latedness 

Estimate + standard error for each species 

and environmental variable 

glmmTMB(Productivity ~ BAL + meanT + meanNDVI + density + 

                                              SPEI_early + SPEI_late + 

                                              aT_early + aT_late + 

                                              aNDVI_early + aNDVI_late + 

                                              (1|ID_PROG) + (1|YEAR)) 

 

1 

Estimate the influence of life-history traits on this response 2 

Estimate the response of species to environmental variables 

* Species 

For each trait (Habitat, STI, number of broods, migration status): 

Figure 5: Steps of the meta-analysis performed to estimate the influence of life-history traits on the response of 

environmental variables. For visualization purposes, quadratic and interaction terms included in the GLMM are not 
shown here 
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RESULTS 
 

Effects of environmental variability on productivity 

Results of the selection model process are presented in Table 3. We decided to report results per 

environmental variable rather than per selection step to make the main results easier to stand out, as 

the selection process was just a way to get to the final best model while maintaining a reasonable 

computation time.  

Effects of temperature   

On average, across all species, temperature was the main environmental factor driving 

productivity. The effect of temperature anomalies was statistically supported in almost all steps of 

the selection process, with most covariates having an AIC weight of 1.00 (Table 3), meaning that 

they were in all best models.  

Temperature anomalies have an overall positive effect on productivity.  

Dividing the breeding season into an early and late breeding season significantly improves the model 

(Table 3, ΔAICc(M4 – M1) = 192.7). Temperature anomalies seem to have contrasting effects during 

these two periods. Warmer temperatures during the early breeding period are beneficial for 

productivity, and this is even more the case in cold sites in which temperature is a limiting factor 

(Figure 6a). Yet, this effect is not linear and the significant quadratic term indicates that a temperature 

optimum is reached: during the early breeding season, in cold sites, the beneficial effect of 

temperature stagnates for temperature anomalies higher than +2°C. In warm sites, the optimum is 

reached for temperature anomalies of +1°C (Figure 6a). In contrast, this positive effect of temperature 

is not found during the late breeding period. The influence of temperature variability is less 

pronounced than during the early breeding period with no apparent effect in warm sites and a slight 

decrease in productivity associated with increasing temperature anomalies in cold sites (Figure 6b).  

 

Extreme events: 

 Using the number of ECEs rather than temperature anomalies or the SPEI did not improve the 

model, as the best model including the number of ECEs had a significantly lower AICc (Table 3, 

ΔAICc(M7 – M4) = 58.5). The effect of number of ECEs was similar (same direction and strength) 

to the effect of temperature anomalies. Hence, we did not detect a peculiar effect of out-of-norm high 

temperatures (exceptional heat waves effect) or extreme drought. 

 

 

 

 

 

 

 

 

a b 

Figure 6: Effects of temperature anomalies on productivity during a) the early breeding season and b) the late breeding season, 
in interaction with the site temperature category.  

These graphs – and the next ones –  were obtained using the ggpredict function (ggeffects package), which computes predicted 
values based on the best model (MB) for levels of specified predictors. Colour ribbons represent 95% confidence intervals 
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Effects of drought 

Contrary to temperature, we did not find support for a simple, linear effect of SPEI on 

productivity. The effect of early SPEI appeared to be rather non-linear as we found statistical support 

for quadratic terms (Table 3). As for temperature, we found a stronger effect of the SPEI during the 

early breeding season than during the late breeding season. Productivity was maximal for SPEI values 

within the normal range of variation (-1<SPEI<1), whereas productivity decreased for out-of-norm 

(both negative and positive) SPEI values associated to very dry or wet conditions for the local climate. 

However, we found opposite and counter-intuitive results for the late breeding period, with the 

highest productivity being observed at extremely dry or wet conditions. The SPEI seems to be 

involved in complex interactions with water balance (BAL), as we observe diverging responses to 

the SPEI in dry (BAL<0) and wet (BAL>0) sites (Figure 7), and with the mean site temperature 

(Figure 7), which makes results difficult to interpret.    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of primary productivity 

Including the NDVI in the best model improves the fit of the model (Table 3, ΔAICc(MB – M4) = 

36.6), meaning that primary productivity has an effect on productivity. The intensity of the effect is 

similar to SPEI (based on z-score values). We also found contrasting results during the early and the 

late breeding season. As expected, the higher the local primary productivity (NVDI anomaly), the 

higher bird productivity. In poorly productive sites (low mean NDVI values), an increase of the 

primary productivity (positive NDVI anomalies values) leads to a greater bird productivity. Whereas 

in sites that are already very productive on average, an increase in primary productivity has no effect 

on bird productivity (Figure 8).  

Early SPEI 

Late SPEI 
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Figure 7: Effects of drought on productivity during a) the early breeding season and b-c) the late breeding season, in 

interaction with the site temperature category (a-b) and average site water balance (c).  
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Critical approach of the best model 

The best model among all tested combinations (Table 3) contained most predictors, with complex 

quadratic effects and interactions. These terms improved the fit of the model, as the deletion of one 

term of the model would lead to a significant decrease in AICc (> 2). Yet, results obtained for the late 

breeding season do not seem to have a biological meaning, with U-shaped responses to environmental 

variables (Figure 7c) meaning that productivity is the lowest for average environmental conditions. 

These results made us questionning the relevance of these terms we have approximated using 

quadratic effects. Predictions for some ranges of values were extrapolated to fit a quadratic effect to 

our data, and if it was better suited than a linear effect, it may not be sufficient to accurately estimate 

the whole range of variation.   

Influence of habitat  

Productivity also varied between habitats, and including an additive habitat effect to the best 

model improved the fit (ΔAICc = 15.5). The effect of some environmental on productivity also differs 

between terrestrial and aquatic habitats (Figure 9): while mean water balance (BAL) had no effect on 

productivity in terrestrial habitats, in aquatic shrubs an increase in water availability (BAL >0) 

significantly improves productivity (Figure 10).  

Figure 8: Effects of NDVI anomalies on productivity during the early breeding season in interaction with the average 
site NDVI  
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Influence of phenology 

As expected, the earlier the reproduction (negative phenological anomaly in Fig. 10), the higher the 

productivity. The intensity of the phenological effect is similar to temperature anomalies during the 

early breeding season (similar z values) and adding phenology to the model greatly improved the fit 

to the data compared to without accounting for phenology (ΔAICc = 150).   

Figure 9: Estimates (± se) of the response of productivity to environmental predictors (x axis), without accounting for 

habitat (pink bars), in terrestrial habitats (Green bars) and aquatic habitats (Blue bars).  
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Figure 10: Effects of average site water balance on productivity in terrestrial and aquatic habitats  
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Differences between groups of species 

Our meta-analysis revealed that long-distance migrants showed a stronger response to climatic 

events during the early breeding season than resident species. They were more affected by drought: 

the slope of their response to SPEI was more pronounced, which means that negative values of SPEI 

(dry conditions) were associated to lower productivity (Figures 12c-13b). The response to 

temperature variations did not significantly differ between migration statuses, but long-distance 

migrants tended to be slightly more negatively affected by warmer temperatures during the early 

breeding period. As their breeding phenology is less flexible than in resident species, they suffer more 

from trophic mismatch and might not be able to avoid the negative effects of drought on their trophic 

resource by reproducing earlier. However, we did not observe differences between migration statuses 

during the late breeding period as long-distance migrants have already arrived at their breeding sites 

and experience the same weather conditions as resident species.  

In contrast, differences between terrestrial and aquatic species were more pronounced during the 

late breeding period, when aquatic habitats may dry up because of a lack of precipitation associated 

with high temperatures. We therefore observe a negative response to drought for aquatic species 

during the late breeding period, whereas terrestrial species are less strongly affected. However, our 

meta-analysis revealed that aquatic species benefited more from high temperatures than terrestrial 

species.  

Furthermore, the response to early NDVI anomalies varied according to number of broods species 

are able to produce (Figure 12e). The productivity of multi-brooded species increased when the 

environment was more productive (positive NDVI anomalies), whereas single-brooded species did 

not respond to varying primary productivity (Figure 13d). In favorable environmental conditions, 

multi-brooded species are more susceptible to successfully raise two broods, which improves 

productivity. In contrast, when primary productivity is low, they might attempt to breed only once as 

conditions are more difficult and there is less food supply for their offspring.  

However, the STI did not influence species’ responses to meteorological variations. 

 

 

 

 

Figure 11: Effects of phenological change on productivity  
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Figure 12: Differential responses of life-history traits to climate variability.  
These graphs represent the estimates (±se) obtained for each environmental variable in the meta-analysis using the 

brms model  
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Figure 13: Effects of environmental variables on productivity for the different life-history traits that differed 
significantly in their response  
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ID Model Temperature SPEI NDVI AICc ΔAICc ΔAICc step 

M0 Null       109050.5 282.2   

M1 Meteo spring 

interactions + 

quadratic 

 aT    +     aT²   +   cat:aT SPEI + SPEI² + BAL:SPEI   
108997.6 229.3 0 

(1.00)  +  (0.97)  +   (0.80) (1.00)   +    (1.00)    +      (1.00)         

M2 
Meteo spring 

aT     
109020.8 252.5 23.2 

(1.00)     

M3 Meteo spring 

interactions 

aT     
109024.5 256.2 26.9 

(1.00)     

M4 Early/late + 

interactions + 

quadratic terms 

aT early + (aT early)² + aT late + (aT late)² + cat:aT early 

+ cat:aT late + cat:(aT late)²  

(early SPEI)² + (late SPEI)² + BAL:(early SPEI)² + 

BAL:(late SPEI)² 
  

108804.9 36.6 0 

(1.00) + (1.00) + (1.00) + (0.96) + (1.00) + (1.00) + (0.94)     (1.00)     +     (1.00)       +         (1.00)      +      (1.00)      

M5 
Early/late 

aT early + (aT late)² early SPEI   
108978.9 210.6 174 

(1.00) +  (0.73) (0.75)   

M6 

 
Early/late + 

interactions 

aT early + cat:aT early + aT late + cat:aT late  early SPEI   
109010.1 241.8 205.2 

    (1.00)     +       (1.00)       +       (1.00)       +      (1.00)     (0.90)   

M7 

ECE SPEI + best aT 

 mean_aT_late + (mean_aT_early)² + (mean_aT_late)² + 

cat:mean_aT_early +      cat:mean_aT_late + 

cat:(mean_aT_early)² + cat:(mean_aT_late)² 

early_nb_ECE_SPEI + late_nb_ECE_SPEI + 

BAL:early_nb_ECE_SPEI + BAL:late_nb_ECE_SPEI + 

cat:early_nb_ECE_SPEI + cat:late_nb_ECE_SPEI 

  
108863.4 95.1 0 

fixed (0.99)  +  (1.00) +  (0.79) +  (0.69)  +  (0.77) +  (1.00)   

M8 

ECE aT + best SPEI 

 early_nb_ECE_aTemp + late_nb_ECE_aTemp + 

(early_nb_ECE_aTemp)² + cat:early_nb_ECE_aTemp + 

cat:late_nb_ECE_aTemp 

 early_SPEI + late_SPEI + (early_SPEI)² + (late_SPEI)²   
108977.4 209.1 114 

(1.00)   +    (1.00)    +    (1.00)  +   (1.00)   +   (1.00) fixed   

M9 
Early/late ECE + 

interactions 

early_nb_ECE_aT + late_nb_ECE_aT + 

cat:early_nb_ECE_aT + cat:late_nb_ECE_aT  
late_nb_ECE_SPEI   

109010.1 241.8 146.7 

    (1.00)     +      (1.00)      +       (1.00)     +      (1.00)    (0.89)   

M10 
Early/late ECE 

  late_nb_ECE_SPEI   
109044.4 276.1 181 

  (0.97)   

M11 
ECE 

      
109050.5 282.2 187.1 

      

MB Early/late + 

interactions + 

quadratic terms with 

NDVI 

aT early + (aT early)² + aT late + (aT late)² + cat:aT early + 

cat:aT late + cat:(aT late)²  

 (early SPEI)² + late SPEI + (late SPEI)² + BAL:(early 

SPEI)² + BAL:(late SPEI)² + cat:early SPEI 

aNDVI_early + aNDVI_late + 

meanNDVI:aNDVI_early 
108768.3 0 0 

fixed     

M12 Early/late + 

interactions NDVI 

early aT + cat:aT early + late aT + cat:aT late + (late aT)² early SPEI aNDVI early 
108905.1 136.8 136.8 

fixed (0.75) (0.99) 

M13 
Early/late NDVI 

early aT + late aT + (late aT)²  early SPEI aNDVI early 
108954.8 186.5 186.5 

fixed (0.66)  (1.00) 

M14 
Meteo spring NDVI 

aT    aNDVI  
109018.2 249.9 249.9 

fixed   (0.79) 

M15 Meteo spring 

interactions NDVI 

aT   aNDVI + meanNDVI:aNDVI 
109020.5 252.2 252.2 

fixed   (0.90)   +     (0.72) 

Table 3: Summary of the best models selected at each step. Covariates’ cumulative AICc weights are indicated in brackets and variables whose w(AICc) = 1 appear in bold. ΔAICc 
corresponds to the difference with the AICc of the best model (BM), and ΔAICc step corresponds to the difference with the best model identified within the selection step. Variables 
included in the null model are not represented here as they were common to all models 
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Parameter Estimate Std. Error z value p-value 
 

Estimate Std. Error z value p-value 

Fixed effects 
          

Null model mean_BAL -0.0489 0.0317 -1.54 0.1230 

     

catWarm -0.1244 0.0644 -1.93 0.0532 
     

meanNDVI -0.0777 0.0315 -2.47 0.0137 * 

     

density -0.0811 0.0024 -33.38 < 2.00e-16 *** 
    

 
Early Late 

SPEI early_SPEI 0.0331 0.0155 2.14 0.0321 * late_SPEI 0.0308 0.0181 1.7 0.0887 

(early_SPEI)² -0.0069 0.0066 -1.06 0.2895 (late_SPEI)² 0.0051 0.0074 0.69 0.4889 

catWarm : early_SPEI -0.0511 0.0127 -4.01 5.98e-05 *** 
    

 
BAL:early_SPEI -0.0014 0.0077 -0.19 8.46e-01 BAL : late_SPEI 0.0003 0.0082 0.04 0.9664 

BAL:(early_SPEI)² 0.0169 0.0040 4.22 2.40e-05 *** BAL : (late_SPEI)² -0.0380 0.0046 -8.23 < 2e-16 *** 

Temperature aT_early 0.1512 0.01336 11.32 < 2e-16 *** aT_late -0.0580 0.0160 -3.62 0.0003 *** 

(aT_early)² -0.0265 0.0076 -3.48 0.0005 *** (aT_late)² 0.0207 0.0077 2.69 0.0071 ** 

catWarm : aT_early -0.0802 0.0115 -7 2.60e-12 *** catWarm : aT_late 0.0742 0.0141 5.28 1.32e-07 *** 

catWarm : (aT_early)² -0.0061 0.0083 -0.74 4.57e-01 catWarm : (aT_late)² -0.0293 0.0080 -3.65 0.0003 *** 

NDVI aNDVI_early 0.0209 0.0104 2.01 0.0440 * aNDVI_late -0.0174 0.0085 -2.04 0.041 * 

meanNDVI : aNDVI_early -0.0175 0.0041 -4.23 2.35e-05 *** 
     

Random effects 
          

  
Variance Std.Dev. 

       

ID_PROG (Intercept) 0.27783 0.5271 
       

YEAR (Intercept) 0.01783 0.1335 
       

ESPECE (Intercept) 0.99631 0.9982 
       

Table 4: Effects of environmental predictors on productivity.  These estimates were obtained from the best model (BM) 
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DISCUSSION 
 

This study assessed the effects of climate variability on productivity. The most salient effect of 

meteorological conditions on productivity was the dominating positive influence of temperature: the 

warmer springs, the higher the offspring production. This is congruent with previous studies such as 

Meller et al. (2018) who found a positive relationship between spring temperature and productivity 

in 20 songbird species living at Northern latitudes, and Hoover & Schelsky (2020) who showed that 

warmer temperatures in early spring enhanced productivity by favouring an earlier breeding. McLean 

et al. (2022) also identified temperature as the most important contributor to breeding productivity, 

with 48% of temporal changes in offspring number was attributed to temperature. Yet, the timing of 

warming is key to determine the effect on productivity: during the early breeding season (before egg 

hatching), warmer temperatures improve productivity, probably because an earlier spring allows 

earlier breeding and a greater number of breeding attempts. However, unlike Meller et al. (2018), we 

did not find a linear relationship between temperature and productivity. Our models rather suggested 

that productivity reached a plateau, for temperature anomalies greater than +2°C in cold sites (Figure 

6a). At warm sites, the positive effect of temperature is weaker, with a plateau reached for temperature 

anomalies of +0.5°C. This difference between warm and cold sites might explain that Meller et al. 

did not find a quadratic relationship, as the sites studied were located at higher latitudes, where 

temperatures are colder: the productivity plateau may not be reached, even during warm events.  

Overall, there was no major effect of temperature during late spring, only a slight declining trend of 

productivity with increasing temperature anomalies in cold sites. Other studies found more 

pronounced negative effects of warmer temperatures during the late breeding period: Albright et al. 

(2010) found consistent negative responses of productivity to extreme weather occurring in the late 

breeding period. Temperatures in the late breeding season are indeed higher, and the heat stress 

caused by extremely high temperature may affect nestlings survival, leading to a lower breeding 

productivity (Sergio et al., 2018).  

The tighter relationship of breeding productivity with early spring temperature, also found by 

Telensky et al. (2020), may be explained by the importance of phenological flexibility. When spring 

arise earlier (i.e. earlier warming), most species achieve to breed earlier, and benefit from this earlier 

breeding, either because warmer conditions reduce the cost of reproduction, or because earlier 

breeding allows a better match between the peak of energetical demand for chick rearing and the 

seasonal peak of invertebrate prey production. Indeed, productivity was strongly influenced by 

breeding phenology (cf. phenology effect), what supports the hypothesis that part of the gain in 

productivity in warmer years is attributable to beneficial earlier breeding (Hoover & Schelsky, 2020), 

rather than to a reduced cost of breeding throughout the breeding season. Whereas high temperatures 

occurring after nestlings have hatched will not influence breeding phenology and might not favor 

primary productivity as in early spring. Aquatic species were less negatively affected by heat during 

the late breeding season than terrestrial species (Figure 13a). Terrestrial species might be more 

sensitive to heat stress, or more exposed in case of species living in open and agricultural landscapes. 

Yet, these results may be influenced by the high number of terrestrial species included in our dataset 

compared to aquatic species (Appendix 3). Analyzing terrestrial habitats in more details would allow 

to distinguish species living in forest and therefore less exposed to extreme heats, from species living 

in more open areas.  
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 However, we did not detect significant influence of the STI, the number of broods and migratory 

status on species’ response to temperature, contrary to what was expected (Halupka & Halupka, 2017; 

Ross et al., 2017). It may be because of a lack of statistical power, and including more species – as in 

Halupka & Halupka (2017) – might allow us to detect differences. Otherwise, as France is located at 

intermediate latitudes, warmer temperatures might not allow a longer breeding period as much as at 

higher latitudes: warm temperatures in the early spring may allow an earlier onset of breeding, but 

the increased occurrence of heat waves and droughts in the late spring could constrain the end of the 

breeding season. Thus, the breeding season would shift earlier, but not be longer.   

Beside the effect of temperature, precipitations also generated interannual variation in 

productivity. Indeed, the two considered drought indices (SPEI and NDVI) explained some variation 

in productivity, even in models adjusted for the effect of temperature. During the early breeding 

period, we found that productivity was maximal for SPEI conditions slightly wetter than on average. 

Hence, as well as excessively humid years, drought had a negative impact on breeding productivity, 

as expected (Carleton et al., 2019; Conrey et al., 2016; Gardner et al., 2017; Glądalski et al., 2014; 

Marcelino et al., 2020; Marrot et al., 2017; Skagen & Adams, 2012). This effect was stronger for 

long-distance migrants. It had already been shown that these species are negatively affected by 

climate variability to a greater extent that resident species (Albright et al., 2009; Telenský et al., 

2020), due to their limited flexibility of breeding phenology (constrained by their fixed, photoperiodic 

timing of initiation of the return trip to breeding grounds (Dawson et al., 2001). As they arrive later 

to their breeding ground, an early drought may have already affected vegetation, reducing the 

available food supply. Thus, even if a different response to temperature would be expected between 

migration statuses because of phenology mismatch (Jones & Cresswell, 2010), we only detected a 

different response to SPEI reflecting the influence of an early drought on long-distance migrants.    

with grassland species and avian communities from dry and semi-arid habitat being more strongly 

affected (Albright et al., 2010; Cady et al., 2019). 

The NDVI gave similar results for the average songbird, with vegetation greenness anomalies 

being positively correlated with productivity in low productive sites: droughts affecting vegetation 

greenness are associated with a lower breeding productivity.  Even if disentangling the effects of heat 

waves and drought is not easy, drought seems to either affect productivity by counterbalancing 

positive effects of warm springs, or accentuate the negative effects of heat waves. Therefore, Albright 

et al. (2010) showed that while co-occuring droughts and heat waves strongly affect bird 

communities, droughts with relatively cool temperature or heat waves with relatively abundant 

precipitation have a weaker influence on avian abundance. 

However, unexpectedly, we dit not find an impact of drought during the late breeding period – 

i.e. the most critical stage of reproduction, when chick rearing requires maximal quality and quantity 

of food. Results were indeed biologically unexpected, and are to be considered cautiously. This may 

be due to complex interactions that we are not able to properly account for (e.g. more complex that 

two-way interactions or quadratic relationships). A drought occurring during the late breeding period 

may also not be as influential as temperature, as there is a lag in the response of primary productivity 

to drought and a drought occurring during chick rearing might have a greater influence afterwards.  

Albright et al. (2010) emphasizes the importance of July and August temperatures, which are 

generally the hottest of the year, on avian abundance. As the late breeding period we considered stops 

mid-July, we might miss an important period for population dynamics. Therefore, temperature and 

drought occurring after hatching might have a greater influence on the survival of fledging during 

summer than on breeding productivity.   
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Choosing the right time scale is indeed a key issue in analyzing biological responses to climate 

variability. In this study, we focused on spring weather as we expect spring temperature and 

precipitation to influence plant anabolism, and therefore food availability for songbirds (Smith et al., 

2011), which is very likely to affect breeding success (Eglington et al., 2015). Winter precipitations 

may also influence primary productivity via groundwater storage, but we considered it to be 

negligible compared to soil moisture in the soil top layer (Entin et al., 2000), which also predicts 

invertebrates abundance (Carroll et al., 2011). Even though most studies considered weather 

conditions averaged over the whole breeding season(Dubos et al., 2018; Eglington et al., 2015; Gorzo 

et al., 2016; Marcelino et al., 2020; Meller et al., 2018; Saracco et al., 2022), we wanted to examine 

finer time windows to determine when passerine birds are most sensitive to heat and drought. This is 

why we divided the breeding season in two distinct periods based on a priori assumptions (Albright 

et al., 2010; Telenský et al., 2020), during which birds may have different needs. Weather signals 

during the early breeding season will influence laying dates (Bailey et al., 2022), while food (e.g. 

insect larvae) abundance after hatching will be a key parameter for nestlings survival. Accounting for 

environmental variables during the early and late breeding period separately rather than during the 

whole breeding period significantly improved the fit of the model (Table 3, ΔAIC(M14 – M13) = 

63.4), showing that productivity is affected differently by the weather during these time periods. 

Considering multiple time windows allows to identify the ‘best’ possible window as well as potential 

co-occuring effects of short- and long-time weather signals acting on a trait (Bailey & Van De Pol, 

2016). As the effect of weather signals can be complex and there is not much a priori knowledge 

about the period of highest sensitivity for passerine birds – which is species-specific (Cady et al., 

2019) – we also wanted to use a systematic approach to identify the temporal windows of maximal 

sensitivity of productivity to each meteorological variable and for each species. We used the climwin 

R package (Bailey & Van De Pol, 2016), which uses a sliding window approach to vary the start and 

end time of the climate window used in the models, and then compare the models with an information 

criterion approach. However, due to our large dataset, computation time to test multiple time windows 

was too long, and results obtained for the first species were not biologically relevant. Climwin 

identified very short time windows (a few days), which is usually a sign of false positives: the package 

will always identify a climate window as “the best one”, even if there is no climate signal in the 

dataset. Climwin offers an interesting approach and it would have been great to be able to apply this 

approach to more species, to identify the most appropriate time window to consider, allowing more 

precision in the prediction of responses to environment variability than with the larger time windows 

we considered. Applying climwin to groups of species rather than on single species might improve 

the statistical power, as this approach requires large datasets. Yet, in case of large interspecific 

variation in the responses to climate variability, we might not be able to detect a shared time-window 

of sensitivity. 

The SPEI, contrary to other drought indices such as the Palmer’s Drought Severity Index (PDSI 

(Kchouk et al., 2022; Yildirim et al., 2022); Palmer, 1965), offers a great flexibility in terms of 

definition of temporal grain (i.e., duration of the period over which it is computed) and temporal 

window (i.e., timing of drought with respect to calendar date). These characteristics made it the ideal 

candidate for our study as we wanted to consider various time windows. Our results reaffirmed the 

choice of the SPEI and the NDVI, that are also among the most widely used drought indices (Kchouk 

et al., 2022; Yildirim et al., 2022).  Combining the SPEI with the NDVI allowed us to determine 

whether the water deficit affected birds directly, or only via a change in primary production. As 

correlation between the two variables was low and both were retained in the best model, we can 
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conclude that they convey different information and one cannot be used instead of the other. Indeed, 

the NDVI may reflect longer-term processes and is not only influenced by the current precipitations 

and temperatures, but also by winter precipitations affecting groundwater availability and reservoir 

storage, especially in forests where deeper root systems can mitigate the effects of short water 

shortages on vegetation. Since the correlation between the SPEI and NDVI varies between habitats 

(Li et al., 2015), we could expect the relative importance of these two aspects of drought to vary 

between species: species living in forests could be less affected by short droughts than species living 

in open areas, while species feeding on ground invertebrates (e.g. blackbirds, thrushes) may be more 

sensitive to short-term SPEI affecting ground moisture. Performing a path-analysis may help discern 

the multiple causal pathways through which the SPEI and NDVI act on productivity and could be 

considered in further analyses to disentangle direct and indirect effects of drought.  

All environmental variables used in this study appear to influence productivity to a certain extent, 

but climate variability was not the main factor driving variations of breeding productivity. Indeed, 

climate variability affects the habitat and food resource of passerine birds, but this interannual 

variation remains smaller than differences observed between sites (Morrison et al., 2022). We used 

random effects to consider this variation, but did not incorporate spatial structure into our models as 

sites are spread across France (Figure 3) and computing time would increase due to a greater 

complexity. Adding a distance matrix might help better represent spatial variability and improve the 

models. Abundance and productivity indicators are produced yearly for each site, so that volunteer 

bird ringers can follow variations of population dynamics at their capture site, and compare it to other 

stations (Appendix 7). They were produced at the national scaled and recently adapted to a regional 

scale, grouping stations within a biogeographical region.  

 

As productivity determines fluctuations in abundance (Albright et al., 2009), abundance 

influences productivity via a density-dependent effect. Indeed, we controlled for variations in density 

in our models and it appeared to be the major driver of productivity among the variables we 

considered (z-score 3 times higher for density than for early temperatures). This density-dependence 

could lead to carry-over effects, i.e. processes (like meteorological effects) occurring in one season 

that carry over to the next (Walker et al., 2015). A highly productive season would lead to a high 

number of juveniles, which could negatively affect productivity the next year. This would cause 

temporal correlation, but we did not consider indirect carry-over effects in the models to focus on 

direct effects. Indeed, passerine birds have a short life span and only 20% of juveniles (55% of adults) 

survive until the following year. Moreover, the increasing frequency and intensity of summer 

droughts and heat waves observed with climate change also negatively affects survival (McLean et 

al., 2022), and especially post-fledging survival as they are more fragile than adults at this stage of 

development. Yet, young adults (1 year old) represent about 45% of breeding birds. Therefore, 

population trends are highly dependent on productivity (Morrison et al., 2022) and post-fledging 

survival (Halupka et al., 2023). Further studies on post-breeding data would be required to investigate 

the effects of climate variability on survival and have a more complete understanding of the 

implications of climate change on population dynamics. However, our dataset only covers the 

breeding period and does not record survival during the rest of the year. A way to estimate juveniles’ 

survival is to assess the proportion of individuals born the previous year. But we might have to cross 

our dataset with data from other monitoring programs to be able to disentangle effects of heat waves 

and drought in the late summer from the effects of winter conditions on survival.  
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CONCLUSION 
 

 In conclusion, breeding productivity is affected by climate variability, but the density-

dependence effect explained the greatest part of variation in productivity. Among the environmental 

variables considered, temperature variation was the main factor driving changes in productivity, with 

warmer temperatures during the early breeding season leading to an increased productivity mediated 

by a change in phenology. A warmer early spring allows passerine birds to reproduce earlier, which 

favors offspring production. However, heat during the late breeding season rather tends to have a 

negative effect on productivity, with terrestrial species being more impacted. Drought also affects 

negatively productivity, but to a lesser extent. Long-distance migrants, which are less flexible, suffer 

more from droughts in the early breeding season than resident species. Investigating juvenile survival 

might emphasize an importance of climate variability during summer, when heat waves and drought 

are the most intense. Moreover, it would allow a better understanding of the influence of climate 

variability on long-term population trends, with species abundances driven by previous productivity 

and survival via a density-dependence effect.  
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ANNEXES 

Appendix 1 – Statistical analyses: Annotated script of statistical analyses 

Here are presented only parts of the scripts used for the main analyses. The rest of the script I used 
during my internship is available on my github 

I. Annotated script showing the model selection procedure to identify the effects of climatic 
variability on productivity 

library(dplyr) 
library(data.table) 
library(glmmTMB) 
library(MuMIn) 
 
cat(" ------------------    Import data    ---------------------") 
 
var_model_scaled <- fread("/scratchbeta/adenotn/data/var_model_final_allsp_scaled.csv") 
 
options(na.action = "na.fail") # Required for dredge to run 
 
# delete all years-site-species with NA for NDVI or SPEI 
var_model_scaled_noNA <- var_model_scaled %>%  
  filter(!is.na(meanNDVI)) %>%  
  filter(!is.na(early_SPEI)) %>% filter(!is.na(early_nb_ECE_SPEI)) 
 
cat(" ------------------    Run model    -----------------------") 
 
mod <- glmmTMB(cbind(JUV, AD) ~ mean_BAL + cat + meanNDVI + density + 

early_SPEI + late_SPEI + cat:early_SPEI + cat:late_SPEI + I(early_SPEI^2) + I(late_SPEI^2) +           
mean_BAL:I(early_SPEI^2) + mean_BAL:I(late_SPEI^2) +                  mean_aT_early + 
mean_aT_late + I(mean_aT_early^2) + I(mean_aT_late^2) + cat:mean_aT_early + cat:mean_aT_late 
+ I(mean_aT_early^2):cat + I(mean_aT_late^2):cat +                   mean_aNDVI_early + 
mean_aNDVI_late + meanNDVI:mean_aNDVI_early + 

     (1|ID_PROG) + (1|YEAR) + (1|ESPECE), 
     family=binomial, data=var_model_scaled_noNA) 
 
summary(mod) 

 



 

 

 
 
cat(" ----------------    Model selection MuMIn    --------------------") 
 
# Generate a model selection table of models with combinations (subsets) of fixed effect terms in mod 
mod_dredge <- dredge(mod, trace = 2) # trace = 2 to see the advancement   
 
head(mod_dredge) 
 
 
 
 
 
 
 
 
 
 
 
# print sum of weights   
sw(mod_dredge) 

 
options(na.action = "na.omit") # set back to default 
 
 
 
 
 
 
 
 
 

II. Annotated script showing the meta-analysis performed to test the effects of life-history 
traits on the response to climatic variability 



 

 

require(tidyverse) 

require(data.table) 
require(ggplot2) 

require(glmmTMB) 
require(brms) 

require(phytools) 
 
 

cat(" ------------------    Import data    -----------------------") 
 

var_model_scaled <- fread("/scratchbeta/adenotn/data/var_model_final_allsp_scaled.csv") 
 
## there are 162 species captured, we keep only 48 for which we have enough data    

 
sp_capt <- fread("/scratchbeta/adenotn/data/sp_capt.csv") # Table with the number of captured individuals per species 

sp_capt <- sp_capt %>% mutate(phylo = gsub(" ", "_", nom_sc)) %>%  
  mutate(phylo = gsub("Cyanistes", "Parus", phylo)) # in the tree, Cyanistes caeruleus is Parus caeruleus 

 
species <- sp_capt$ESPECE 
 

# keep the 50 most captured species, without PANBIA and SYLALA that are captured in only a few sites 
var_model_scaled50 <- var_model_scaled %>% filter(ESPECE %in% species[1:50]) %>%  

  filter(!(ESPECE %in% c("PANBIA","SYLALA"))) 
 
 

cat(" ------------------   RUN glmm   -----------------------") 
 

mod <- glmmTMB(cbind(JUV, AD) ~ mean_BAL + cat + meanNDVI + density + 
                 early_SPEI + late_SPEI + 
                 I(early_SPEI^2) + I(late_SPEI^2) + 

mean_aT_early + mean_aT_late + I(mean_aT_early^2) +           I(mean_aT_late^2) + 
early_SPEI:ESPECE + late_SPEI:ESPECE + cat:early_SPEI + cat:late_SPEI + 

                 mean_aNDVI_early + mean_aNDVI_late + mean_aNDVI_early:meanNDVI+ 
                 I(early_SPEI^2):ESPECE + I(late_SPEI^2):ESPECE + 

                 mean_BAL:I(early_SPEI^2) + mean_BAL:I(late_SPEI^2) + 
                 mean_aT_early:ESPECE + mean_aT_late:ESPECE + I(mean_aT_early^2):ESPECE + 
I(mean_aT_late^2):ESPECE + 

                 cat:mean_aT_early + cat:mean_aT_late + I(mean_aT_early^2):cat + I(mean_aT_late^2):cat + 
                 mean_aNDVI_early:ESPECE + mean_aNDVI_late:ESPECE + 

                 ESPECE + (1|ID_PROG) + (1|YEAR), 
               family=binomial, data=var_model_scaled50) 
 

 
## Save estimates and standard errors in a dataframe 

s <- summary(mod) 
coef <- as.data.frame(s[["coefficients"]][["cond"]]) 
coef$var <- row.names(coef) 

# extract species name 
coef_sp <- coef %>% filter(grepl("ESPECE", var) & nchar(var)>12) %>% 

  mutate(Species = substr(var,nchar(var)-6+1, nchar(var))) 
# extract environmental variable name  

coef_sp <- coef_sp %>%  
  mutate(var_name = substr(var,1, nchar(var)-13)) 
 

Var Trait Estimate Est.Error l-95%_CI u-95%_CI 

early_SPEI HABITAT_SPAqua-
tique 

-0.01 0.04 -0.1 0.06 

early_SPEI MIGRATIONLong 0.05 0.03 -0.01 0.12 



 

 

early_SPEI Broods 0 0.03 -0.06 0.06 

early_SPEI sti_europe 0 0.01 -0.03 0.03 

late_SPEI HABITAT_SPAqua-
tique 

0.11 0.05 0.01 0.21 

late_SPEI MIGRATIONLong -0.04 0.04 -0.13 0.05 

late_SPEI Broods 0 0.04 -0.09 0.07 

late_SPEI sti_europe -0.03 0.02 -0.07 0.01 

I(early_SPEI^2) HABITAT_SPAqua-
tique 

-0.06 0.03 -0.11 0 

I(early_SPEI^2) MIGRATIONLong -0.01 0.03 -0.06 0.04 

I(early_SPEI^2) Broods 0.02 0.02 -0.02 0.06 

I(early_SPEI^2) sti_europe 0 0.01 -0.02 0.02 

I(late_SPEI^2) HABITAT_SPAqua-
tique 

-0.01 0.04 -0.08 0.06 

 

 
 

cat(" ------------------   Save file   -----------------------") 
 

write.csv(coef_sp, file = "/scratchbeta/adenotn/output/coef_sp_meta2.csv", row.names = FALSE) 
 
 

 
cat(" ------------------    Prepare data brms    -----------------------") 

 
cat(" ------------------    Import tree    -----------------------") 
phylo <- ape::read.nexus("/scratchbeta/adenotn/data/AllBirdsEricson1.nex")  

 
 

cat(" ------------------    Build consensus tree    -----------------------") 
## The nexus file phylo is composed of 100 trees 
## We build a 50% consensus tree to use in the analyses 

 
list_trees <- vector("list",100) 

# select species from our data for each tree   
for(i in 1:100){ 

  tree <- phylo[[i]] 
  phylo_sp <- ape::drop.tip(tree, setdiff(tree$tip.label,sp_capt$phylo)) 
  list_trees[[i]] <- phylo_sp 

} 
# save trees with only our species in a new nexus file 

ape::write.nexus(list_trees, file = "/scratchbeta/adenotn/data/test_subset_100.nex", translate = TRUE) 
 
phylo_sub <- ape::read.nexus("/scratchbeta/adenotn/data/test_subset_100.nex") 

 
 

# Compute consensus tree 
t1<- phytools::consensus.edges(phylo_sub) 



 

 

 
 
cat(" -----------    Phylogenetic variance-covariance matrix    ------------") 
A <- ape::vcv.phylo(t1)  

 
# import file with latin species name to match names from the tree to our data 

nom_especes <- fread("/scratchbeta/adenotn/data/nom_especes.csv", encoding = "Latin-1") 
 
 

cat(" -----------    Import THV    ------------") 
 

# Import life-history traits 
THV <- fread("/scratchbeta/adenotn/data/THV_all_sp.csv", encoding = "Latin-1") 

 
# transform species name 
coef_sp_brms <- coef_sp %>%  

  left_join(nom_especes, by = c("Species" = "SP")) %>%  
  dplyr::select(Estimate, `Std. Error`, var, var_name, Species, nom_sc) %>%  

  mutate(nom_sc = gsub(" ", "_", nom_sc)) %>%  
  left_join(THV, by = c("Species" = "ESPECE")) %>% #add THV 
  rename(Broods = `Broods per year`) %>%  

  mutate(nom_sc = gsub("Cyanistes", "Parus", nom_sc)) # in the tree, Cyanistes caeruleus is Parus caeruleus 
 

colnames(coef_sp_brms)[1:7] <- c("est", "se", "var", "var_name", "ESPECE", "phylo", "nom_sc") 
 
# check that all species are in the phylogeny   

diff <- setdiff(unique(coef_sp_brms$phylo), colnames(A)) 
 

# delete species that are not in the tree from the dataframe 
coef_sp_brms <- coef_sp_brms %>% filter(!(phylo %in% diff)) 

 



 

 

# relevel factor to have terrestrial species as a reference   

coef_sp_brms <- coef_sp_brms %>%  
  mutate(HABITAT_SP = as.factor(HABITAT_SP)) %>%  

  mutate(MIGRATION = as.factor(MIGRATION)) 
 

coef_sp_brms$HABITAT_SP <- relevel(coef_sp_brms$HABITAT_SP, ref = "Terrestre") 
 
 

cat(" --------------    Loop on environmental variables    ------------------") 
# We run the brms model on each environmental variable to examine if life-history traits influence the response 

 
for(x in unique(coef_sp_brms$var_name)){ 
  cat(paste0("brms on ", x, "\n")) 

  df <- subset(coef_sp_brms, var_name == x) 
  df$obs <- 1:nrow(df) 

   
  

  cat(paste0("MODEL HABITAT_SP \n")) 
   
  model_meta_hab <- brm(est | se(se) ~ HABITAT_SP + 

                          (1|gr(phylo, cov = A)) + (1|obs), 
                        data = df, family = gaussian(), 

                        data2 = list(A = A), 
                        prior = c(prior(normal(0, 10), "Intercept"), 
                                  prior(student_t(3, 0, 10), "sd")), 

                        control = list(adapt_delta = 0.95), 
                        chains = 2, cores = 2, iter = 4000, warmup = 1000) 

   
  print(summary(model_meta_hab)) 

 
   
 # plot estimates 
  png(paste0("/scratchbeta/adenotn/output/plot_model_meta_hab", x, ".png")) 

  plot(model_meta_hab) 
  dev.off() 

   
   
  cat(paste0("MODEL MIGRATION \n")) 

   
  model_meta_migr <- brm(est | se(se) ~ MIGRATION + 

                           (1|gr(phylo, cov = A)) + (1|obs), # control for phylogenetic relatedness 
                         data = df, family = gaussian(), 

                         data2 = list(A = A), 
                         prior = c(prior(normal(0, 10), "Intercept"), 
                                   prior(student_t(3, 0, 10), "sd")), 

                         control = list(adapt_delta = 0.95), 
                         chains = 2, cores = 2, iter = 4000, warmup = 1000) 

   
  print(summary(model_meta_migr)) 



 

 

 
   
  # plot estimates 
  png(paste0("/scratchbeta/adenotn/output/plot_model_meta_migr", x, ".png")) 

  plot(model_meta_migr) 
  dev.off() 

   
  cat(paste0("MODEL NB BROODS \n")) 
   

  model_meta_broods <- brm(est | se(se) ~ Broods + 
                             (1|gr(phylo, cov = A)) + (1|obs), 

                           data = df, family = gaussian(), 
                           data2 = list(A = A), 

                           prior = c(prior(normal(0, 10), "Intercept"), 
                                     prior(student_t(3, 0, 10), "sd")), 
                           control = list(adapt_delta = 0.95), 

                           chains = 2, cores = 2, iter = 4000, warmup = 1000) 
 

  print(summary(model_meta_broods)) 
   
  # plot estimates 

  png(paste0("/scratchbeta/adenotn/output/plot_model_meta_broods", x, ".png")) 
  plot(model_meta_broods) 

  dev.off() 
   
   

  cat(paste0("MODEL WITH STI \n")) 
   

  model_meta_sti <- brm(est | se(se) ~ sti_europe + 
                          (1|gr(phylo, cov = A)) + (1|obs), 

                        data = df, family = gaussian(), 
                        data2 = list(A = A), 
                        prior = c(prior(normal(0, 10), "Intercept"), 

                                  prior(student_t(3, 0, 10), "sd")), 
                        control = list(adapt_delta = 0.95), 

                        chains = 2, cores = 2, iter = 4000, warmup = 1000) 
   
  print(summary(model_meta_sti)) 

   
  round(t(apply(post[, 11:14], 2, quantile, c(.5, .025, .975))), digits = 2) 

   
  # plot estimates 
  png(paste0("/scratchbeta/adenotn/output/plot_model_meta_sti_", x, ".png")) 

  plot(model_meta_sti) 
  dev.off() 

  cat("DONE \n \n") 
} 

 



 

 

Appendix  2 – Number of individuals captured each year for the 50 most captured species 
 

 

  



 

 

Appendix 3 – List of species used in the 2nd part of the analyses and their associated life-

history traits 

Species code HABITAT MIGRATION Broods 
per year 

TSI 

Sylvia atricapilla SYLATR Terrestrial Short 1 12.62 

Acrocephalus scirpaceus ACRSCI Aquatic Long 1 NA 

Erithacus rubecula ERIRUB Terrestrial Short 2 12.00 

Parus major PARMAJ Terrestrial Short 1.5 12.34 

Turdus merula TURMER Terrestrial Short 2.5 12.58 

Phylloscopus collybita PHYCOL Terrestrial Short 2 11.95 

Sylvia communis SYLCOM Terrestrial Long 1 12.65 

Prunella modularis PRUMOD Terrestrial Short 2 10.91 

Cyanistes caeruleus PARCAE Terrestrial Short 1 12.74 

Luscinia megarhynchos LUSMEG Terrestrial Long 1.5 14.49 

Acrocephalus schoenobaenus ACRSCH Aquatic Long 1 NA 

Sylvia borin SYLBOR Terrestrial Long 1 11.32 

Hippolais polyglotta HIPPOL Terrestrial Long 1 14.84 

Aegithalos caudatus AEGCAU Terrestrial Short 1 12.66 

Troglodytes troglodytes TROTRO Terrestrial Short 2 12.24 

Turdus philomelos TURPHI Terrestrial Short 2.5 11.40 

Cettia cetti CETCET Aquatic Short 2 15.95 

Phylloscopus trochilus PHYLUS Terrestrial Long 1 NA 

Fringilla coelebs FRICOE Terrestrial Short 1 12.30 

Passer domesticus PASDOM Terrestrial Short 3 12.26 

Emberiza schoeniclus EMBSCH Aquatic Short 1.5 NA 

Acrocephalus palustris ACRRIS Aquatic Long 1 NA 

Pyrrhula pyrrhula PYRULA Terrestrial Short 2 NA 

Poecile palustris PAPALU Terrestrial Short 1 NA 

Certhia brachydactyla CERYLA Terrestrial Short 2 NA 

Luscinia svecica LUSSVE Aquatic Long NA NA 

Sylvia curruca SYLCUR Terrestrial Long 1 11.64 

Poecile montanus PARNUS Terrestrial Short 1 NA 

Carduelis cannabina CARINA Terrestrial Short NA NA 

Emberiza citrinella EMBCIT Terrestrial Short 2 11.55 

Saxicola torquata SAXTOR Terrestrial Short NA 13.99 

Carduelis chloris CARCHL Terrestrial Short NA 12.60 

Dendrocopos major DENMAJ Terrestrial Short 1 12.12 

Alcedo atthis ALCATT Aquatic Short 1.5 NA 

Lanius collurio LANRIO Terrestrial Long 1 NA 

Sturnus vulgaris STUVUL Terrestrial Short 1.5 11.80 

Lophophanes cristatus PARCRI Terrestrial Short 1 11.71 

Phoenicurus phoenicurus PHOPHO Terrestrial Long 2 11.31 

Carduelis carduelis CARLIS Terrestrial Short 2 NA 

Locustella naevia LOCNAE Aquatic Long 2 NA 

Anthus trivialis ANTTRI Terrestrial Long 1.5 11.24 

Garrulus glandarius GARGLA Terrestrial Short 1 12.47 

Phylloscopus bonelli PHYBON Terrestrial Long 1 13.86 

Sitta europaea SITEUR Terrestrial Short 1 12.79 

Sylvia cantillans SYLCAN Terrestrial Long 2 16.42 

Emberiza cirlus EMBCIR Terrestrial Short 2 15.05 

Locustella luscinioides LOCLUS Aquatic Long 1.5 NA 

Hirundo rustica HIRRUS Terrestrial Long 2.5 12.43 



 

 

Appendix 4 – Graphical representation of the GAMM investigating the effects of mean 

temperature on productivity 
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Appendix 5 – Evolution of the proportion of juveniles captured.   

The inflexion point Xmid corresponds to the fledging peak, the proxy we used for breeding 
phenology (Cuchot et al., in prep.) 
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Appendix 6 – Pearson’s correlation coefficients between estimations of phenological change 

obtained with Cuchot’s and Moussus’s methods 

 

 

  



 

 

Appendix 7 – Extract of the reports produced for volunteer bird ringers (her for the site 

n°204) 

 

 



 

 

 

 



 

 

Appendix 8 – Distribution of temperature and NDVI anomalies 

 Temperature anomalies 

NDVI anomalies 



 

 

 

INFLUENCE DE LA VARIABILITE CLIMATIQUE SUR LA PRODUCTIVITE DES PASSEREAUX 

COMMUNS 

 

 

 

Le changement climatique affecte la dynamique des populations par le biais d'un réchauffement global et d'une augmentation de la fréquence et de 

l'intensité des événements climatiques extrêmes. De nombreuses études se sont concentrées sur l'influence de la température sur la reproduction des oiseaux, mais 

les effets de la variabilité climatique sur la productivité restent mal compris. Nous avons utilisé des données collectées sur 23 ans provenant du programme 

français de baguage STOC Capture (Suivi Temporel des Oiseaux Communs par capture) pour étudier l'impact global de la sécheresse et des vagues de chaleur 

sur la productivité des passereaux et pour déterminer si les caractéristiques des espèces, telles que le statut migratoire ou l'habitat, influençaient les réponses à la 

variabilité climatique. La température a été le principal facteur environnemental expliquant des variations interannuelles de la productivité, par le biais d'un 

changement dans la phénologie de la reproduction. Des températures plus chaudes au début de la période de reproduction ont eu un effet positif sur la production 

de jeunes, tandis que la sécheresse a eu un effet négatif sur la productivité. Ces réactions à la variabilité climatique étaient plus prononcées dans les sites où la 

température moyenne locale était plus basse et chez les espèces vivant dans un habitat terrestre. Les migrateurs de longue distance ont été plus fortement touchés 

par une sécheresse précoce, en raison de la flexibilité limitée de leur phénologie de reproduction. En fin de période de reproduction, après l'éclosion des œufs, la 

variabilité météorologique a eu un effet plus faible sur la productivité et nous n'avons pas trouvé de tendances clairs. Néanmoins, les variations de productivité 

associées à la variabilité météorologique sont faibles par rapport aux variations induites par la densité-dépendance. Par conséquent, d'autres processus doivent 

être pris en compte pour expliquer les changements de dynamiques de population. 
 
MOTS-CLES -  changement climatique – sécheresse – productivité – passereaux  

 

 

 

THE INFLUENCE OF CLIMATE VARIABILITY ON THE PRODUCTIVITY OF SONGBIRDS 

 

 
Climate change affects population dynamics through a global warming and increase of extreme climatic events in both frequency and intensity. Many 

studies have focused on the influence of temperature on bird reproduction, but the effects of climate variability on productivity remains poorly understood. We 

used a 23-year long dataset from the French constant effort site ringing scheme to investigate the overall impact of drought and heat waves on the productivity of 

songbirds and whether species’ traits such as migration status or habitat influenced responses to climate variability. Temperature was the main environmental 

driver of interannual variations in productivity, mediated by a change in breeding phenology. Warmer temperatures during the early breeding period had a positive 

effect on offspring production, while drought negatively affected productivity. These responses to climatic variability were more pronounced in sites with a lower 

local average temperature and species living in a terrestrial habitat. Long-distance migrants were more strongly impacted by an early drought because of their 

limited flexibility of breeding phenology. Later in the breeding period, after eggs have hatched, meteorological variability had a weaker effect on productivity 

and we did not find clear patterns. Nevertheless, variations in productivity associated with meteorological variability are small compared to variations driven by 

density-dependence. Therefore, more processes have to be considered to explain changes in population dynamics.     

 

 
KEY WORDS -  climate change – drought – offspring productivity - songbirds 

 

 


