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Abstract 139 

1. Currently, the deployment of tracking devices is one of the most frequently used approaches to 140 

study movement ecology of birds. Recent miniaturisation of light-level geolocators enabled 141 

studying small bird species whose migratory patterns were widely unknown. However, 142 

geolocators may reduce vital rates in tagged birds and may bias obtained movement data. 143 

2. There is a need for a complex assessment of the potential tag effects on small birds, as previous 144 

meta-analyses did not evaluate unpublished data, focused mainly on large species and the 145 

number of published studies tagging small birds has increased substantially.  146 

3. We quantitatively reviewed 549 records extracted from 74 published and 48 unpublished studies 147 

on over 7,800 tagged and 17,800 control individuals to examine the effects of geolocator tagging 148 

on small bird species (body mass <100 g). We calculated the effect of tagging on apparent 149 

survival, condition, phenology and breeding performance and identified the most important 150 

predictors of the magnitude of effect sizes. 151 

4. Even though the effects were not statistically significant in phylogenetically controlled models, we 152 

found a weak negative impact of geolocators on apparent survival. The negative effect on survival 153 

was stronger with increasing relative load of the device and with geolocators attached using 154 

elastic harnesses. Moreover, tagging effects were stronger in smaller species with bigger clutches 155 

and multiple broods. 156 

5. In conclusion, we found weak effect on apparent survival of tagged birds and accomplished to 157 

pinpoint key aspects and drivers of tagging effects. We provide recommendations for establishing 158 

matched control group for proper effect size assessment in future studies and outline various 159 

aspects of tagging that need further investigation. Finally, our results encourage further use of 160 

geolocators on small bird species but the ethical aspects and scientific benefits should always be 161 

considered. 162 
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 163 

Keywords: condition, migration, phenology, reproduction, return rate, survival, tracking device, tag 164 

effect 165 

 166 

Introduction 167 

Tracking devices have brought undisputed insights into the ecology of birds. Use of these tags enabled 168 

researchers to gather valuable information about full annual cycles, year-round geographic distribution 169 

of populations and other ecological patterns in many species whose movement ecology was widely 170 

unknown (e.g. Patchett, Finch, & Cresswell, 2018; Stanley, MacPherson, Fraser, McKinnon, & 171 

Stutchbury, 2012; Weimerskirch et al., 2002). A significant proportion of recently published tracking 172 

studies uses light-level geolocators on small bird species (body mass up to 100 g; Bridge et al., 2013; 173 

McKinnon & Love, 2018); however, the increasing use of these tags on small birds raises questions about 174 

ethics of tagging and how representative the behaviour of tagged individuals is (Jewell, 2013; Wilson & 175 

McMahon, 2006). 176 

 Studies using tracking devices such as archival light-level geolocators (hereafter ‘geolocators‘) 177 

frequently report the effect of tagging. Nevertheless, there is a notable lack of comprehensive data 178 

reporting necessary for a proper assessment of this effect (Bodey et al., 2018). The published results on 179 

the effects of geolocator tagging are equivocal: some found reduced apparent survival, breeding success 180 

and parental care (Arlt, Low, & Pärt, 2013; Pakanen, Rönkä, Thomson, & Koivula, 2015; Scandolara et al., 181 

2014; Weiser et al., 2016) while others report no obvious effects (Bell, Harouchi, Hewson, & Burgess, 182 

2017; Fairhurst et al., 2015; Peterson et al., 2015; van Wijk, Souchay, Jenni-Eiermann, Bauer, & Schaub, 183 

2015). Recent meta-analyses evaluating the effects of geolocators (Costantini & Møller, 2013) or 184 

tracking devices in general (Barron, Brawn, & Weatherhead, 2010; Bodey et al., 2018) showed slightly 185 
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negative effects on apparent survival, breeding success and parental care. However, these studies 186 

involved mainly large bird species and there is thus a lack of complex evaluation of geolocator effects on 187 

small birds including species’ life-history and ecological traits, geolocator design, and type of 188 

attachment. The relative load of the devices is the most frequently discussed aspect affecting the tagged 189 

birds. Previous meta-analyses showed stronger tagging effects with increasing tag mass (Costantini & 190 

Møller, 2013), or suggested multiple threshold values of relative load on birds (Barron et al., 2010; 191 

Bodey et al., 2018). However, these studies were based on samples of mainly larger species where the 192 

same additional relative load affects flight performance more than in smaller species (Caccamise & 193 

Hedin, 1985). There is thus a need for systematic assessment of tag load effects on small birds. 194 

Almost all prior meta-analyses reporting effects of tagging relied only on published sources and 195 

could thus be affected by publication bias (Koricheva, Gurevitch, & Mengersen, 2013), as omitting 196 

unpublished sources in meta-analyses may obscure the result (see e.g. Sánchez-Tójar et al. 2018). The 197 

main source of publication bias in movement ecology could be a lower probability of publishing studies 198 

based on a small sample size, including studies where no or only few tagged birds were successfully 199 

recovered due to a strong tagging effect. Additionally, geolocator effects most frequently rely on 200 

comparisons between tagged and control birds and a biased choice of control individuals may directly 201 

lead to the misestimation of the tagging effect sizes. The bias in the control groups can be due to 202 

selection of smaller birds, birds being caught in different spatio-temporal conditions, including non-203 

territorial individuals, or different effort into recapturing control and tagged individuals. 204 

As the picture of the potential tag effects is incomplete and the number of studies tagging small 205 

birds is rapidly increasing each year, we aim at testing these effects on small bird species in both 206 

published and unpublished studies to minimize the impact of publication bias. Moreover, we control for 207 

the species’ ecological and life-history traits, type of control treatment as well as geolocator and 208 

attachment designs. We build on the most recent advances in meta-analytical statistical modelling to 209 
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get unbiased estimates of the geolocator deployment effects controlled for phylogenetical non-210 

independence and its uncertainty (Doncaster & Spake, 2017; Guillerme & Healy 2017; Hadfield, 2010; 211 

Viechtbauer, 2010). 212 

 213 

Predictions 214 

i) Geolocators will negatively affect apparent survival, condition, phenology and breeding 215 

performance of small birds. 216 

ii) Negative effects will be stronger in unpublished studies than in published studies. 217 

iii) Deleterious effects will be most prominent in studies establishing matched control groups compared 218 

to studies with potentially-biased control groups. 219 

iv) Geolocators which constitute a higher relative load will imply stronger negative effects.  220 

v) Geolocators with a light stalk/pipe will cause stronger negative effects because of increased drag in 221 

flight and thus energetic expenditure (Bowlin et al., 2010; Pennycuick, Fast, Ballerstädt, & 222 

Rattenborg, 2012). These effects will be stronger in aerial foragers than in other foraging guilds 223 

(Costantini & Møller, 2013). 224 

vi) Non-elastic harnesses will cause stronger negative effects on tagged individuals than those tagged 225 

with elastic harnesses that may avoid flight ability restrictions during intra-annual body mass 226 

changes (Blackburn et al., 2016). 227 

Material and Methods 228 

Data search 229 

We conducted an exhaustive search for both published and unpublished studies deploying geolocators 230 

on bird species with body mass up to 100 g. We searched the Web of Science Core Collection (search 231 
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terms: TS = (geoloc* AND (bird* OR avian OR migra*) OR geologg*)) and Scopus databases (search 232 

terms: TITLE-ABS-KEY (geoloc* AND (bird* OR migra*) OR geologg*)), to find published studies listed to 233 

18 February 2017. Moreover, we searched reference lists of studies using geolocators on small birds and 234 

included studies from previous comparative studies (Bridge et al., 2013; Costantini & Møller, 2013; 235 

Weiser et al., 2016). In order to get information from unpublished studies, we inquired geolocator 236 

producers and the Migrant Landbird Study Group to disseminate our request for unpublished study 237 

details among their customers and members, respectively. In addition, we asked the corresponding 238 

authors of the published studies to share any unpublished data. The major geolocator producers – 239 

Biotrack, Lotek, Migrate Technology and the Swiss Ornithological Institute – sent our request to their 240 

customers. To find whether the originally unpublished studies were published over the course of this 241 

study, we inspected their status on 31 August 2018. The entire process of search and selection of studies 242 

and records (described below) is presented in a flow-chart (Fig. S1). 243 

Inclusion criteria; additional data requesting 244 

We included studies that met the following criteria: 245 

1. The study reported response variables (e.g. return rates, body masses) necessary for effect size 246 

calculation. 247 

2. The study included a control group of birds alongside the geolocator-tagged individuals or reported 248 

a pairwise comparison of tagged birds during geolocator deployment and recovery. 249 

3. As a control group, the study considered birds marked on the same site and year, of the same sex 250 

and age class without any indication of a difference in recapture effort between tagged and control 251 

groups. 252 

4. For pairwise comparisons, the study presented correlation coefficients or raw data. 253 

5. The variable of interest was presented outside the interaction with another variable. 254 
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We asked the corresponding authors for missing data or clarification when the criteria were not met or 255 

when it was not clear whether the study complied with the criteria (70% response rate [n = 115]). In 256 

addition, we excluded birds that had lost geolocators before subsequent recapture as we did not know 257 

when the bird lost the geolocator, and excluded all individuals tagged repeatedly over years because of 258 

possible inter-annual carry-over effects of the devices. VB assessed all studies for eligibility and 259 

extracted data, the final dataset was cross-checked by JK and PP. A list of all published studies included 260 

in the meta-analysis is provided in the Published Data Sources section. 261 

Trait categories; effect size calculation; explanatory variables 262 

We divided all collected data into four trait categories: apparent survival, condition, phenology and 263 

breeding performance based on the response variables reported (e.g. inter-annual recapture rates, body 264 

mass changes, arrival dates, or clutch sizes; Table S2). These categories represent the main traits 265 

possibly affected in the geolocator-tagged individuals. Subsequently, analyses were run separately for 266 

each trait category. We calculated the effect sizes for groups of tagged birds from the same study site 267 

and year of attachment, of the same sex (if applicable) and specific geolocator and attachment type 268 

accompanied with the corresponding control groups. For simplicity, we call these units records 269 

throughout the text. For each record, we extracted a contingency table with the treatment arm 270 

continuity correction (Schwarzer, Carpenter, & Rücker, 2014) or mean, variance, and sample size, to 271 

calculate the unbiased standardised mean difference – Hedges’ g (Borenstein, Hedges, Higgins, & 272 

Rothstein, 2009) – and its variance with correction for the effect of small sample sizes (Doncaster & 273 

Spake, 2018). We used the equation from Sweeting et al. (2004) to calculate variance in pairwise 274 

comparisons. When raw data were not provided, we used the reported test statistics (F, t or χ2) and 275 

sample sizes to calculate the effect size using the R package compute.es (Del Re 2013). Besides the 276 

effect size measures, we extracted additional variables of potential interest – ecological and life-history 277 

Page 14 of 56

Journal of Animal Ecology: Confidential Review copy

Journal of Animal Ecology: Confidential Review copy



14 
 

traits per species, methodological aspects of the study, geolocator design and harness material elasticity 278 

(Table 1). 279 

Accounting for dependency 280 

We accounted for data non-independence on several levels. When multiple records shared one control 281 

group (e.g. several geolocator types and attachment designs used in one year), we split the sample size 282 

in the shared control group by the number of records to avoid a false increase in record precisions. 283 

When multiple measures were available for the same individuals, we randomly chose one effect size 284 

measure in each trait category. If the study provided both recapture and re-encounter rates, we chose 285 

the re-encounter rate as a more objective measure of apparent survival. Re-encounters included 286 

captures and observations of tagged birds and thus the bias towards the tagged birds caused by the 287 

potentially higher recapture effort to retrieve the geolocators should be lower. Finally, we accounted for 288 

phylogenetic non-independence between the species and the uncertainty of these relationships using 289 

100 phylogenetic trees (Jetz, Thomas, Joy, Hartmann, & Mooers, 2012) downloaded from the 290 

BirdTree.org (www.birdtree.org) using the backbone of Hackett et al. (2008). Moreover, we used the 291 

random effects of species and study sites in all models, the latter to account for possible site-specific 292 

differences (such as different netting effort or other field methods used by particular research teams). 293 

Overall effect sizes and heterogeneity 294 

We calculated the overall effect size for each trait category from all available records using meta-295 

analytical null models. We employed the MCMCglmm function from the MCMCglmm package (Hadfield, 296 

2010) to estimate overall effect sizes not controlled for phylogeny. We then used the mulTree function 297 

from the mulTree package (Guillerme & Healy, 2017) to automatically fit a MCMCglmm model on each 298 

phylogenetical tree we sampled and summarized the results from all these models to obtain 299 

phylogenetically controlled overall effect size estimates. We used weakly informative inverse-gamma 300 

Page 15 of 56

Journal of Animal Ecology: Confidential Review copy

Journal of Animal Ecology: Confidential Review copy



15 
 

priors (V = 1, nu = 0.002) in all models. As our data contained many effect sizes based on small sample 301 

sizes, which could lead to a biased estimate of the overall effect size variance, all effect sizes were 302 

weighted by their mean-adjusted sampling variance (Doncaster & Spake, 2018). We considered effect 303 

sizes of 0.2, 0.5 and 0.8 Hedge’s g a weak, moderate and large effects, respectively. Moreover, we 304 

calculated the amount of between-study heterogeneity in all null models using the equation described 305 

in Nakagawa and Santos (2012). Phylogenetic heritability (H2) expressing the phylogenetical signal was 306 

estimated as the ratio of phylogenetic variance (σ2
phylogeny) against the sum of phylogenetic and species 307 

variance (σ2
species) from the models (Hadfield & Nakagawa, 2010):  308 

H2 = σ2
phylogeny / (σ2

phylogeny + σ2
species) 309 

Multivariate meta-analysis 310 

To unveil the most important dependencies of the geolocator effects, we calculated three types of 311 

multivariate models: a full trait model, an ecological model and models of publication bias. In the full 312 

trait model, we used all methodological, species, geolocator specification and attachment variables 313 

(Table 1) to estimate their impact on trait category with overall effect. Prior to fitting the ecological 314 

model, we employed a principal component analysis of the inter-correlated log continuous life-history 315 

traits and extracted the two most important ordination axes – PC1 and PC2 (Table 1). The PC1 explained 316 

54.4% of the variability and expressed a gradient of species characterised mainly by body and egg mass, 317 

clutch size and number of broods (Fig. S3). The PC2 explained 18.7% of variance and was characterised 318 

mainly by clutch sizes, number of broods and migration distances (Fig. S3). These axes together with the 319 

categorical ecological traits (Table 1) then entered the ecological model to estimate their effect on trait 320 

category with overall effect. Finally, we tested for differences in effect sizes between published and 321 

unpublished results in each trait category using all available records. In all models, we employed the 322 

rma.mv function from the R package metafor (Viechtbauer, 2010) weighted by the mean-adjusted 323 
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sampling error (Doncaster & Spake, 2018). Continuous predictors were scaled and centred. Because the 324 

phylogenetical relatedness of the species explained only a small amount of variation, we did not control 325 

for phylogeny in the multivariate models but incorporated the random effect of species and study site. 326 

We calculated R2 for the full trait and ecological models using the residual between-study variability 327 

(τ2
residual) and the total between-study variability (τ2

total) according to the equation (López-López, Marín-328 

Martínez, Sánchez-Meca, Van den Noortgate, & Viechtbauer, 2014):  329 

R2 = (1 – τ2
residual / τ2

total) × 100 330 

Publication bias; body mass manipulation  331 

We used funnel plots to visually check for potential asymmetry caused by publication bias in each trait 332 

category (Fig. S4). To quantify the level of asymmetry in each trait category, we applied the Egger’s 333 

regression tests of the meta-analytical residuals from all null models of the trait categories (calculated 334 

using the rma.mv function) against effect size precision (1 / mean-adjusted standard error; Nakagawa & 335 

Santos, 2012). An intercept significantly differing from zero suggested the presence of publication bias. 336 

In order to find differences in log body mass between the tagged and control individuals during the 337 

tagging and marking, we applied a linear mixed-effect model with species and study site as a random 338 

factor weighted by the sample sizes. We considered all effect sizes significant when the 95% credible 339 

interval (CrI) or confidence interval (CI) did not overlap zero. All analyses were conducted in R version 340 

3.3.1 (R Core Team, 2016).  341 

 342 

Results 343 

We assessed 854 records for eligibility of effect size calculation. Consequently, we excluded 36% of 344 

these records mainly due to a missing control group (59%) or missing essential values for effect size 345 
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calculation (21%; Fig. S1). Finally, a total of 122 studies containing 549 effect sizes were included in our 346 

meta-analysis wherein 35% effect sizes originated from unpublished sources (Table 2). The vast majority 347 

of the analysed effect sizes originated from Europe or North America (94%; Fig. S5) and the data 348 

contained information about 7,829 tagged and 17,834 control individuals of 69 species from 27 families 349 

and 7 orders (Table S6). 350 

We found a weak overall negative effect (Hedges’ g: –0.2; 95% CrI –0.29, –0.11; P <0.001) only 351 

on apparent survival in the model not controlled for phylogeny. Although we found no statistically 352 

significant overall tagging effects in any trait category when controlling for phylogenetical relatedness, 353 

the estimates were similar to those not controlled for phylogeny (Fig. 1). The phylogenetical signal (H2 = 354 

59%) was statistically significant only for apparent survival, but the variance explained by phylogeny and 355 

species were very low for all models (Table S7).  356 

The full trait model of apparent survival revealed that tagging effects were stronger with 357 

increasing load on tagged individuals and geolocators with elastic harnesses affected birds more than 358 

geolocators with non-elastic harnesses (Table 3, Fig. 2). However, we found no effect of the control 359 

group type, sex, stalk length, foraging strategy or the interaction between stalk length and foraging 360 

strategy (Table 3). The ecological model suggested a relationship of apparent survival with the PC1, with 361 

negative effects being stronger with decreasing body and egg mass, increasing clutch size and in species 362 

having multiple broods (Table 3). The full trait model explained 21.1% and the ecological model 11.8% of 363 

the between-study variance.  364 

We did not find any evidence for publication bias, either visually in the funnel plots (Fig. S4), or 365 

using Egger’s regression tests (Table 2) in any of the trait categories. Moreover, none of the publication 366 

bias models found statistically significant differences between published and unpublished effect sizes 367 
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(Table S8). The geolocator-tagged birds were on average 3.8% heavier than control individuals prior to 368 

the geolocator deployment and marking (LMM: estimate 0.008 ± 0.003, t = 2.47, P = 0.014). 369 

 370 

Discussion 371 

Geolocator deployment has a potential to reduce a birds’ apparent survival, condition, breeding 372 

performance, or may delay events of an annual cycle leading to biases in movement data. By conducting 373 

a quantitative review of published studies deploying geolocators on small bird species and incorporating 374 

unpublished data, we revealed only a weak overall effect of geolocators on apparent survival of tagged 375 

birds while we found no clear overall effect on condition, phenology and breeding performance. 376 

Moreover, we found no statistically significant effects of tagging in any of trait categories when 377 

accounting for phylogenetic relationships. Tagging effects on apparent survival were stronger in 378 

individuals with a higher relative load, when the geolocators were attached with elastic harnesses and in 379 

small-bodied species with bigger clutches and multiple broods.  380 

Overall tag effects 381 

A negative overall effect of geolocator tagging on apparent survival found in this study seems to be 382 

consistent across previous comparative studies of tagging effects (Barron et al., 2010; Bodey et al., 2018; 383 

Costantini & Møller, 2013; Trefry, Diamond, & Jesson, 2012; Weiser et al., 2016). However, unlike in 384 

previous comparative (Barron et al., 2010; Bodey et al., 2018) and primary studies (e.g. Adams et al., 385 

2009; Arlt et al., 2013; Snijders et al., 2017), we found no overall negative effects on variables associated 386 

with breeding performance in our analysis. No evidence for overall effect on condition and phenology 387 

found in this study is in agreement with equivocal results of the previous studies: some found reduced 388 

condition (Adams et al. 2009, Elliott et al., 2012) or timing of annual cycle events (Arlt et al., 2013, 389 
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Scandolara et al., 2014) while others found no evidence for tagging effects on these traits (Bell et al., 390 

2017; Fairhurst et al., 2015; Peterson et al., 2015; van Wijk et al., 2015).  391 

Tagging effects derive from individuals that returned to the study site and are potentially in better 392 

condition than individuals that did not return causing the weak effects on condition, phenology and 393 

breeding performance. However, the lack of effect we found on phenology and breeding performance 394 

could also be an artefact of the small sample size, as collecting these data is probably more challenging 395 

in small avian species than in relatively heavier species included in the previous studies. Similarly, effects 396 

of tagging on condition could be underestimated due to initial differences we found between the body 397 

mass of tagged and control birds. Additionally, the intra-annual body mass changes could cause a 398 

significant bias in studies where timing of geolocator deployment and geolocator recovery differs. 399 

Overall, the weak effects of tagging we found support several species-specific studies (e.g. Bell et al., 400 

2017; Fairhurst et al., 2015; Peterson et al., 2015; van Wijk et al., 2015) and might be encouraging from 401 

the perspective of deleterious impacts as well as credibility of obtained behaviour of birds. On the other 402 

hand, care should be taken as the tagging effect may be specific for populations, or species. For 403 

example, Weiser et al. (2016) found a negligible overall effect but significant reduction of return rates in 404 

the smallest species in their meta-analysis. The negative effect of geolocators can also vary between 405 

years (Bell et al., 2017, Scandolara et al., 2014), or be induced by occasional bad weather conditions 406 

(Snijders et al., 2017), or food shortages (Saraux et al., 2011; Wilson et al., 2015).  407 

Inferring unbiased overall effect sizes 408 

We minimised the publication bias in our estimates of overall effects by including substantial amount of 409 

unpublished results (192 records of 38 species) and contacting authors of published studies for 410 

additional results. Still, some of these data might get published in the future despite the delay between 411 

our data collation and the final analysis. We did not find any evidence that tagging effects differed 412 
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between published and unpublished studies, suggesting that it may not be a critical consideration for 413 

publishing a study.  414 

Moreover, we found no support for tag effects in studies with matched control individuals to be 415 

stronger compared to studies with less strict control treatments. Nevertheless, the difference we found 416 

in body mass between tagged and control birds could have led to deployment of geolocators on 417 

individuals in better condition with lower load resulting in underestimation of the overall effect size. We 418 

suggest establishing carefully matched control groups in all future studies to enable a more reliable 419 

estimation of tagging effects. Such a control group should include: i) randomly selected individuals of 420 

the same species, sex and age class; ii) individuals caught at the same time of the season and year; iii) at 421 

the same time of the day; iv) of similar size and condition as tagged individuals, and v) exclude non-422 

territorial breeders or individuals passing through the site. 423 

Influence of relative load and species’ life-histories  424 

Our results support the current evidence (Bodey et al., 2018; Weiser et al., 2016) for reduced apparent 425 

survival in studies with a relatively higher tag load on treated individuals. Moreover, we found an 426 

increasing negative effect in studies tagging smaller species with bigger clutches and multiple broods. 427 

The lower body mass in these species is likely accompanied with a higher relative tag load due to lower 428 

limits in tag weights due to technical constraints. Although recent miniaturisation has led to the 429 

development of smaller tags, these tags have been predominantly applied to smaller species instead of 430 

reducing tag load in larger species (Portugal & White, 2018). The various relative loads used without 431 

observed tagging effects (e.g. Bell et al., 2017, Peterson et al., 2015; van Wijk et al., 2015) indicate the 432 

absence of a generally applicable rule for all small bird species (Schacter & Jones, 2017) and we thus 433 

recommend the use of reasonably small tags despite potential disadvantages (e.g. reduced battery 434 

lifespan or light sensor quality). 435 
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Harness material 436 

Contrary to our prediction, we found higher apparent survival in birds tagged with harnesses made of 437 

non-elastic materials. Non-elastic harnesses are usually individually adjusted on the individual, whereas 438 

elastic harnesses are often prepared before attachment to fit the expected body size of the tagged 439 

individuals according to allometric equations (e.g. Naef-Daenzer, 2007). As pre-prepared elastic 440 

harnesses cannot match the size of every captured individual, they may be in the end more tightly fitted 441 

as some researches might tend to tag larger individuals or avoid too loose harnesses to prevent 442 

geolocator loss. Harness tightness was found to significantly reduce the return rates (Blackburn et al. 443 

2016), moreover, the movement ability restrictions may be difficult to register during deployment of tag 444 

with elastic harnesses. In contrast, non-elastic harnesses can be tailored according to the actual size and 445 

made sufficiently loose to account for body mass changes of each individual. Prepared elastic harnesses 446 

are usually used to reduce the handling time during the geolocator deployment (Streby et al. 2015) but 447 

this advantage may be outweighed by the reduced apparent survival of geolocators with tied elastic 448 

harnesses. We thus suggest to consider stress during geolocator deployment together with the 449 

potentially reduced apparent survival and the risk of tag loss when choosing harness material.  450 

Variables without impact on tagging effect  451 

Migratory distance did not affect the magnitude of the effect sizes, contrasting with some previous 452 

findings (Bodey et al., 2018; Costantini & Møller, 2013). However, none of these studies used 453 

population-specific distances travelled, instead using latitudinal spans between ranges of occurrence 454 

(Costantini & Møller, 2013) or travelled distance categorised into three distances groups (Bodey et al., 455 

2018). These types of distance measurements could greatly affect the results especially in species that 456 

migrate mainly in an east-west direction (Lislevand et al., 2015; Stach, Kullberg, Jakobsson, Ström, & 457 

Fransson, 2016) or in species whose populations largely differ in their travel distances (Bairlein et al., 458 
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2012; Schmaljohann, Buchmann, Fox, & Bairlein, 2012). Additionally, we found no overall effect of 459 

species’ foraging strategy, contrary to the strong overall effect found in Costantini and Møller (2013). 460 

Despite tag shape altering the drag and thus energy expenditure during flight (Bowlin et al., 2010; 461 

Pennycuick et al., 2012), apparent survival tended to be better in individuals fitted with stalked 462 

geolocators and we found no interaction between stalk length and foraging strategy on the tagging 463 

effect size. Geolocators with longer stalks have been more frequently used in heavier birds with low 464 

relative load where the expected tag effect is weak. Moreover, previous results of strong negative 465 

effects in aerial foragers led to a preferential use of stalkless geolocators in these species and probably 466 

minimised the tagging effect in this foraging guild (Morganti et al., 2018; Scandolara et al., 2015). 467 

However, the evidence for the negative effects in non-aerial foragers is low as there is only one field 468 

study focusing on stalk length effects on the return rates (Blackburn et al., 2016). 469 

Future considerations 470 

Further studies should focus on inter-annual differences in tagging effects, effects of varying relative 471 

loads, different stalk lengths or different attachment methods to minimise the negative effects of 472 

tagging. All future studies should carefully set matched controls and transparently report on tagging 473 

effects. Finally, our results encourage further use of geolocators on small bird species but the ethical and 474 

scientific benefits should always be considered. 475 
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Table 1. Explanatory variables used in the multivariate meta-analysis of apparent survival extracted from 909 

published and unpublished geolocator studies or from the literature. N presents the number of records 910 

specified as the groups of tagged birds from the same study site, year of attachment, of the same sex, 911 

and the specific geolocator and the attachment type accompanied with the corresponding control 912 

groups. 913 

Methodological aspect Description N 

Published data Published – data from published studies (for details see 

Methods), data from unpublished sources from years following 

an already published study, or data initially collected as 

unpublished but published by 31 August 2018 

303 

Unpublished – data from unpublished studies 123 

Control group Matched – birds handled in the exactly same way as geolocator-

tagged birds except for geolocator deployment 

102 

 

Marked only – birds of the same sex, age, from the same year 

and study site or birds from the same site, from different years 

324 

Species trait    

Foraging strategy1,2 Aerial forager 122 

Non-aerial forager 304 

Sex Males  195 

Females 120 

Geolocator specification   

Relative load % of geolocator mass (including the harness) of the body mass 

of the tagged birds 

418 
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Stalk/pipe length* 

 

Length (mm) of the stalk/pipe holding the light sensor or 

guiding the light towards the sensor (0 mm for stalkless models) 

371 

Attachment specification   

Material elasticity* Elastic – elastan, ethylpropylen, neoprene, rubber, silicone, 

silastic, or Stretch Magic 

235 

Non-elastic – cord, kevlar, nylon, plastic, polyester, or teflon 146 

Ecological trait   

Life-histories Great circle distance between geolocator deployment site and 

population-specific centroid of the non-breeding (or breeding) 

range 

426 

Male body mass (g) 426 

Female body mass (g) 426 

Nest type – open/close 426 

Clutch size (number of eggs) 426 

Number of broods per year 426 

Dense habitat preference (species occurs especially in dense 

habitats e.g. reeds or scrub) – yes/no  

426 

Egg mass (g) – mean fresh mass3  426 

Clutch mass (g) – egg mass × clutch size 426 

* only used for harness attachments  914 

1 Cramp & Perrins, 1977–1994 915 

2 Rodewald, 2015 916 

3 Schönwetter, 1960–1992 917 
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Table 2. Number of unpublished effect sizes included in the analysis and Egger’s regression tests of the 918 

null model residuals against their precision to assess the presence of publication bias. 919 

Trait category 

Unpublished (%)  Egger’s regression 

Effect sizes N  Intercept t SE P 

Apparent survival 28.9 426  0.12 1.53 0.08 0.121 

Condition 63.3 79  –0.36 –1.70 0.21 0.088 

Phenology 59.1 22  –0.26 –1.28 0.21 0.217 

Breeding performance 27.3 22  –0.01 –0.01 0.61 0.993 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 
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Table 3. Summary of the full trait model (n = 281) and the ecological model (n = 426) of the geolocator 931 

effects on apparent survival. Levels contrasted against the reference level are given in parentheses. 932 

Full trait model      

Trait Estimate SE Z 95% CI P 

Intercept –0.25 0.10 –2.59 (–0.44; –0.06) 0.010 

Published (published) 0.14 0.10 1.39 (–0.06; 0.34) 0.164 

Control type (matched) –0.05 0.09 –0.61 (–0.23; 0.12) 0.542 

Foraging strategy (aerial) –0.09 0.14 –0.61 (–0.36; 0.19) 0.540 

Sex (males) –0.07 0.05 –1.30 (–0.17; 0.03) 0.192 

Relative load –0.12 0.05 –2.36 (–0.23; –0.02) 0.018 

Stalk/pipe length 0.07 0.04 1.77 (–0.01; 0.15) 0.077 

Material elasticity (non-elastic) 0.19 0.08 2.21 (0.03; 0.35) 0.026 

Foraging strategy (aerial) × stalk length –0.10 0.07 –1.40 (–0.25; 0.04) 0.161 

Ecological model      

Trait Estimate SE Z 95% CI P 

Intercept –0.26 0.08 –3.20 (–0.42; –0.10) 0.001 

PC1 0.06 0.03 2.32 (0.01; 0.11) 0.026 

PC2 0.02 0.03 0.47 (–0.05; 0.08) 0.638 

Dense habitat (yes) 0.03 0.13 0.21 (–0.22; 0.27) 0.834 

Nest type (open) 0.14 0.11 1.27 (–0.08; 0.36) 0.205 

 933 
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Figure 1. Overall effects of geolocators in the four trait categories, circles give means, horizontal lines 
represent 95% CrI. Filled symbols present the phylogenetically controlled overall effects, open symbols give 
the value from null models not accounting for phylogeny. N presents the number of effect sizes analysed. 

For the detailed description of the trait categories see Methods and Table S2.  
 

85x68mm (600 x 600 DPI)  

 

 

Page 48 of 56

Journal of Animal Ecology: Confidential Review copy

Journal of Animal Ecology: Confidential Review copy



  

 

 

Figure 2. Relationship between relative load and the effect of geolocator deployment on the apparent 
survival of tagged birds. Size of the circles reflects the precision (1 / mean-adjusted SE) of the effect sizes, 

the shaded area and dashed lines depict the 95% CI of the regression.  
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SUPPLEMENTARY MATERIALS S1–S8 

Figure S1. Flow-chart showing the study selection process and the number of records used for the effect 

size calculation for both published and unpublished studies. Records are specified as the groups of 

tagged birds from the same study site, year of attachment, of the same sex, and the specific geolocator 

and the attachment type accompanied with the corresponding control groups. 
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Table S2. Overview on trait categories, the corresponding response variables and their description as 

well as the number of studies and the number of records (specified as groups of tagged birds from the 

same study site, year of attachment, of the same sex, and the specific geolocator and attachment type 

having corresponding control groups). 

Trait Response variables Description # studies # records 

Apparent survival Recapture rate Ratio of recaptured 
individuals between years 

59 287 

 Re-encounter rate Ratio of recaptured or re-
sighted individuals 
between years 

40 139 

Condition Change in body mass Inter-annual changes 36 66 
 Feather corticosterone 

level 
 1 11 

 Arrival body condition Body condition index (body 
mass/wing length) 

1 1 

 Flight speed  1 1 

Phenology Arrival date  7 13 
 First egg laying date  6 9 

Breeding 
performance 

Clutch size  4 5 

 Number of fledglings  4 4 
 Hatching success  3 10 
 Brood success (nest with 

at least one fledgling)  
 2 2 

 Inter-annual site fidelity Inter-annual breeding 
dispersal distances 

1 1 
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Figure S3. The two most important ordination axes from a principal component analysis (PC1 and PC2), 

explaining the largest proportion of variability among continuous life-history traits (male and female 

body mass, egg mass, clutch mass, number of broods per year, clutch size and distance travelled 

between the breeding and non-breeding grounds; Table 1) for all 69 species included in the analysis. PC1 

and PC2 explained 54.4 % and 18.7 % of the variability, respectively. 
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Figure S4. Funnel plots presenting the effect size (Hedges’ g) against the inverse of the mean-adjusted 
sampling error in four trait categories. Solid lines present phylogenetically controlled overall effect size 
and dotted lines 95% CrI. Publication bias in the dataset is indicated by asymmetry of the funnel-shaped 
scatterplot (Koricheva, Gurevitch, & Mengersen, 2013).  
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Figure S5. Location of the study sites included in the analysis.  
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Table S6. Orders, families, species (Hackett et al. 2008) and number of records in each trait category for 

each species included in our analysis. Records are specified as the groups of tagged birds from the same 

study site, year of attachment, of the same sex, and the specific geolocator and the attachment type 

with the corresponding control group.  
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Caprimulgiformes Apodidae Apus apus 14 3 0 0 

  Tachymarptis melba 64 5 0 0 

 Caprimulgidae Caprimulgus europaeus 2 1 0 0 

Cuculiformes Cuculidae Coccyzus americanus 2 0 0 0 

Charadriiformes Charadriidae Charadrius hiaticula 2 1 0 0 

  Charadrius leschenaultii 2 0 0 0 

 Scolopacidae Calidris alba 5 0 0 0 

  Calidris alpina 16 2 2 3 

  Calidris mauri 3 0 0 1 

  Calidris pusilla 16 0 0 5 

  Calidris temminckii 4 1 0 0 

  Phalaropus lobatus 1 0 0 0 

Bucerotiformes Upupidae Upupa epops 2 1 1 1 

Coraciiformes Meropidae Merops apiaster 15 3 0 0 

Piciformes Picidae Jynx torquilla 4 0 0 0 

Passeriformes Acrocephalidae Acrocephalus agricola 4 0 0 0 

  Acrocephalus arundinaceus 27 1 6 0 

  Acrocephalus paludicola 1 1 0 0 

  Acrocephalus scirpaceus 15 1 0 0 

 Calcariidae Calcarius lapponicus 2 0 0 0 

 Emberizidae Emberiza hortulana 15 3 0 0 

  Emberiza melanocephala 3 1 0 0 

 Fringillidae Carpodacus erythrinus 2 1 1 0 

  Loxia curvirostra 0 1 0 0 

  Plectrophenax nivalis 1 0 0 0 

 Hirundinidae Delichon urbicum 1 0 0 0 

  Hirundo rustica 21 23 5 5 

  Progne subis 11 2 0 0 

  Riparia riparia 8 0 0 0 

  Tachycineta bicolor 3 5 0 0 

 Icteridae Dolichonyx oryzivorus 8 2 0 0 

  Euphagus carolinus 4 0 0 0 

  Icterus bullockii 1 0 0 0 

 Laniidae Lanius collurio 0 1 0 0 

  Lanius ludovicianus 10 0 0 1 
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Table S6 (continued). Orders, families, species (Hackett et al. 2008) and number of records in each trait 

category for each species included in our analysis. Records are specified as the groups of tagged birds 

from the same study site, year of attachment, of the same sex, and the specific geolocator and the 

attachment type with the corresponding control group. 
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Order Family Species     

 Locustellidae Locustella luscinioides 5 0 0 0 

 Mimidae Dumetella carolinensis 1 0 0 0 

 Motacillidae Anthus campestris 2 1 1 1 

 Muscicapidae Ficedula albicollis 4 3 0 0 

  Ficedula hypoleuca 16 0 2 0 

  Ficedula semitorquata 4 0 0 0 

  Luscinia megarhynchos 7 4 0 0 

  Luscinia svecica 4 2 0 1 

  Muscicapa striata 3 0 0 0 

  Oenanthe cypriaca 2 0 0 0 

  Oenanthe oenanthe 33 1 1 3 

  Phoenicurus phoenicurus 2 0 0 0 

  Saxicola rubetra 9 0 0 0 

 Parulidae Dendroica kirtlandii 1 1 0 0 

  Dendroica striata 1 0 0 0 

  Seiurus aurocapilla 2 0 0 0 

  Vermivora chrysoptera 4 1 1 1 

 Passerellidae Chondestes grammacus 1 0 0 0 

  Melospiza melodia 2 0 0 0 

  Passerculus sandwichensis 8 0 0 0 

  Passerella iliaca 1 1 0 0 

  Zonotrichia albicollis 2 0 0 0 

  Zonotrichia atricapilla 3 2 0 0 

 Passeridae Passer hispaniolensis 1 0 0 0 

 Sturnidae Sturnus philippensis 2 0 0 0 

 Sylviidae Phylloscopus sibilatrix 2 0 0 0 

 Turdidae Catharus bicknelli 2 0 0 0 

  Catharus fuscescens 1 0 0 0 

  Catharus guttatus 2 1 0 0 

  Catharus ustulatus 1 1 0 0 

  Hylocichla mustelina 2 0 0 0 

  Turdus migratorius 1 0 0 0 

 Tyrannidae Elaenia albiceps 5 2 2 0 

 Vireonidae Vireo olivaceus 1 0 0 0 
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Table S7. Heterogeneity proportions explained by the random effects (%), total between-study 

heterogeneity (%) and phylogenetical heritability (%; 95% CrI) for both phylogenetically controlled and 

uncontrolled null models of each of the four trait categories. 

Model Site Species Phylogeny Residual Total Heritability 

Apparent survival phylogeny 5.7 1.4 2.2 13.1 22.4 58.5 (15.1–92.6) 
Apparent survival 6.1 1.6 – 13.5 21.2 – 
Condition phylogeny 3.0 4.8 4.4 1.8 14.0 46.8 (5.1–94.1) 
Condition 3.3 4.8 – 2.0 10.1 – 
Phenology phylogeny 4.7 5.3 6.5 2.5 19.0 52.3 (5.0–96.5) 
Phenology 5.3 5.5 – 2.7 13.5 – 
Breeding performance phylogeny 19.0 12.3 12.1 10.0 53.4 45.7 (1.6–98.4) 
Breeding performance 22.1 16.2 – 10.5 48.8 – 

 

 

Table S8. Summary of the publication bias models for each trait category. Reference levels for treatment 

contrasts are unpublished results. Sample sizes are in parentheses.  

Trait category Trait Estimate SE Z 95% CI P 

Apparent survival Intercept –0.17 0.08 –2.21 (–0.33; –0.02) 0.027 

(426) Published –0.02 0.09 –0.20 (–0.20; 0.16) 0.838 

Condition Intercept 0.02 0.07 0.33 (–0.12; 0.17) 0.739 

(79) Published –0.06 0.12 –0.52 (–0.29; 0.17) 0.603 

Phenology Intercept 0.03 0.18 0.14 (–0.32; 0.37) 0.888 

(22) Published –0.20 0.21 –0.93 (–0.61; 0.22) 0.353 

Breeding performance Intercept 0.27 0.43 0.63 (–0.57; 1.11) 0.531 

(22) Published –0.61 0.50 –1.23 (–1.58; 0.36) 0.219 
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